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SUMMARY

Inverse iteration, if applied to a symmetric positive definite matrix, is shown to generate a sequence
of iterates with monotonously decreasing Rayleigh quotients. We present sharp bounds from above
and from below which highlight inverse iteration as a descent scheme for the Rayleigh quotient. Such
estimates provide the background for the analysis of the behavior of the Rayleigh quotient in certain
approximate variants of inverse iteration.
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1. Introduction

Inverse iteration is a well-known iterative procedure to compute approximations of
eigenfunctions and eigenvalues of linear operators. It was introduced by Wielandt in 1944
in a sequence of five papers, see [1], to treat the matrix eigenvalue problem

Axi = λixi

for a real or complex square matrix A. The scalar λi is the ith eigenvalue and the vector xi

denotes a corresponding eigenvector. Given a nonzero starting vector x(0), inverse iteration
generates a sequence of iterates x(k) by solving the linear systems

(A− σI)x(k+1) = x(k), k = 0, 1, 2, . . . , (1)

where σ denotes an eigenvalue approximation and I is the identity matrix. In practice, the
iterates are normalized after each step. If A is a symmetric matrix, then the iterates x(k)

converge to an eigenvector associated with an eigenvalue closest to σ if the starting vector x(0)

is not perpendicular to that vector. For non-symmetric matrices the issue of starting vectors is
discussed in Sec. 2.6 in [2]. Elementary results on the convergence theory of inverse iteration
and of the complementary power method are contained in many monographs on numerical
linear algebra, see e.g. Parlett [3], Chatelin [4] or Golub and van Loan [5]. The history of
inverse iteration and new results on its convergence have been presented by Ipsen [2, 6].

Convergence of inverse iteration toward an eigenvector can be estimated in terms of the
Rayleigh quotients of the iterates. The Rayleigh quotient of a vector x is given by

λ(x) =
(x,Ax)
(x, x)

, (2)



2 K. NEYMEYR

where (·, ·) denotes the Euclidean product. The eigenvectors are the stationary points of λ(·)
and its absolute extrema are the extremal eigenvalues of A.

2. Convergence estimates for Inverse Iteration

The purpose of this paper is to derive sharp convergence estimates for the Rayleigh quotient
in the case of inverse iteration being restricted to a symmetric positive definite matrix A.
This restrictive assumption is typically fulfilled for an important class of (extremely) large
eigenproblems, i.e., discretizations of certain elliptic partial differential operators; see below.
These convergence estimates show that inverse iteration for a symmetric positive definite
matrix and under a certain assumption on the shift parameter σ is a descent scheme for the
Rayleigh quotient.

Why is it worthwhile to understand inverse iteration in such a way? Let us first make the
point that usually, the convergence theory of inverse iteration is founded on an eigenvector
expansion of the initial vector, i.e., applying (A− σI)−1 to the actual iteration vector results
in a relative amplification of the eigenvector components corresponding to eigenvalues close to
σ [3]. Such a convergence analysis does not exploit any properties of the Rayleigh quotient.
But there is a different way to look at inverse iteration which is initiated by the demand
that today, one is faced with the problem to solve extremely large eigenproblems in which the
dimension of A exceeds, say, 106 up to 109. Such matrix eigenproblems appear for instance as
mesh discretizations of self-adjoint, elliptic partial differential operators. Typically, only a few
of the smallest eigenvalues together with the eigenvalues are to be computed. Inverse iteration
can be applied. Due to several reasons, the associated linear system of equations given by (1)
can only be solved approximately by using an approximate inverse (or preconditioner) of the
system matrix. See e.g. [7, 10–14].

For these approximate versions of inverse iteration (called “inexact inverse iteration” or
“preconditioned inverse iteration”) any convergence theory built on an eigenvector expansion
of the initial vector breaks down because an approximate solution of (1) may weed out certain
eigenvector components and may amplify others in a complex and hardly controllable way.
Nevertheless, as it turned out in the convergence analysis of these methods, the Rayleigh
quotient can serve as a robust convergence measure since one can prove its stepwise monotonous
decrease [10, 13].

This behavior of the Rayleigh quotient motivates a more detailed investigation of inverse
iteration, i.e., for an exact solution of (1). The results are summarized in this paper and
highlight an interesting property of inverse iteration. Theorem 2.1 provides sharp bounds from
above and below for the decrease of the Rayleigh quotients of the iterates of (1). The technique
of proof is rather unusual: the Lagrange multiplier method is applied to determine constrained
extrema of the Rayleigh quotient with respect to its level sets. By doing so we first obtain the
justification to restrict the analysis to two-dimensional A-invariant subspaces. In a second step
we derive the convergence estimates by means of a mini-dimensional (2D) analysis.

The convergence of the Rayleigh quotients is measured in terms of the ratios

∆i,i+1(λ) :=
λ− λi

λi+1 − λ
and ∆1,n(λ) :=

λ− λ1

λn − λ
. (3)

The eigenvalues of A with arbitrary multiplicity are indexed in ascending order, i.e. 0 < λ1 <
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λ2 < . . . < λn. A small ratio ∆i,i+1(λ), for instance 0 ≤ ∆i,i+1(λ) ≤ ε with ε > 0, is an absolute
measure for the closeness of λ to the eigenvalue λi, as then λ ≤ (λi+ελi+1)/(1+ε) = λi+O(ε).

In Theorem 2.1 we also need the convergence factors

ρi,i+1 =
λi − σ

λi+1 − σ
and ρ1,n =

λ1 − σ

λn − σ
, (4)

which are less than 1 under our assumptions. See also [8, 9] for comparable estimates based on
the quantities (3) and (4) and compare with the results on inexact inverse iteration gained in
[10, 13] which in the limit of exact solution result in (6). Here our main intention is to present
a condensed form of a convergence theory for inverse iteration which is based on the Lagrange
multiplier technique.

Theorem 2.1. Let A ∈ Rs×s be a symmetric positive definite matrix with the eigenvalues
0 < λ1 < . . . < λn; the multiplicity of λi is denoted by mi so that m1 + . . . + mn = s.

For any real number λ ∈ (λi, λi+1) let

L(λ) = {x ∈ Rs; λ(x) = λ}, (5)

which is a level set of the Rayleigh quotient. Moreover, assume also the shifted matrix A− σI
positive definite, i.e. σ ∈ [0, λ1), cf. Remark 2.3.

Then for any x ∈ L(λ) the next iterate x′ = (A− σI)−1x of (1) with the Rayleigh quotient
λ(x′) = λ

(
(A− σI)−1x

)
satisfies

∆i,i+1(λ(x′)) ≤ (ρi,i+1)2∆i,i+1(λ). (6)

Inequality (6) is an estimate on the poorest convergence of λ(x′) toward the closest eigenvalue
λi < λ in terms of (3) and the convergence factor ρi,i+1 which is defined by (4). The right-hand
side of (6) does not depend on the choice of x, but only on λ. Estimate (6) is sharp as it is
attained in a certain x ∈ L(λ).

Moreover, the fastest convergence is described by a sharp estimate from below

(ρ1,n)2∆1,n(λ) ≤ ∆1,n(λ(x′)). (7)

Once again, there is a certain x ∈ L(λ) in which the lower bound (7) is attained.
For σ = 0 the following sharp estimate for λ(x′) results from (6) and (7)

1
λ−1

1 + λ−1
n − (λ1 + λn − λ)−1

≤ λ(x′) ≤ 1
λ−1

i + λ−1
i+1 − (λi + λi+1 − λ)−1

. (8)

Remark 2.2. If the initial iterate x(0) satisfies λ(x(0)) < λ2, then (6) can be applied
recursively. This yields

∆1,2(λ(x(k)))
∆1,2(λ(x(0)))

≤
(

λ1 − σ

λ2 − σ

)2k

, k = 1, 2, . . . ,

and guarantees convergence of (x(k)/‖x(k)‖, λ(x(k))) to an eigenpair (x1, λ1).
Note that Theorem 2.1 does not refer to the components of an eigenvector expansion of the

initial vector x(0). Consequently, as reflected by the estimate (6), inverse iteration starting with
λ(x(0)) ∈ (λi, λi+1) in the case of poorest convergence can only be shown to converge to an
eigenpair (xi, λi). See also the remarks above on inexact, or preconditioned, inverse iteration
for which, typically, no assumptions on eigenvector expansions of the iteration vectors can be
made.
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Proof. Let

UT AU = diag(λ1, . . . , λ1︸ ︷︷ ︸
m1

, λ2, . . . , λ2︸ ︷︷ ︸
m2

, . . . , λn, . . . , λn︸ ︷︷ ︸
mn

) =: Λ ∈ Rs×s

be a diagonal matrix with λi being the ith eigenvalue of A with the multiplicity mi. Then for
any x ∈ L(λ) one obtains v = UT x as the corresponding coefficient vector with respect to the
eigenbasis. It holds λ(x) = (v,Λv)/(v, v) =: λ(v) and

λ(x′) = λ((A− σI)−1x) =
(v,Λ(Λ− σI)−2v)
(v, (Λ− σI)−2v)

=: λ((Λ− σI)−1v), (9)

where we use the same notation λ(·) for the Rayleigh quotient with respect to both bases.
Next we give a justification for restricting the analysis to simple eigenvalues only. Therefore,

let Λ̄ := diag(λ1, . . . , λn) ∈ Rn×n. For any v ∈ Rs with λ = λ(v) define v̄ ∈ Rn in such a way
that

v̄i =

(
m+mi∑
l=m+1

v2
l

)1/2

with m = m1 + m2 + . . . + mi−1, i = 1, . . . , n, m0 = 0,

i.e., all components of v corresponding to λi are condensed into the single component v̄i. Then

λ̄(v̄) :=
(v̄, Λ̄v̄)
(v̄, v̄)

=
(v,Λv)
(v, v)

= λ

and

λ̄((Λ̄− σIn×n)−1v̄) :=
(v̄, Λ̄(Λ̄− σIn×n)−2v̄)
(v̄, (Λ̄− σIn×n)−2v̄)

=
(v,Λ(Λ− σIs×s)−2v)
(v, (Λ− σIs×s)−2v)

= λ(x′),

which is a representation of the Rayleigh quotient (9) in terms of the reduced matrix Λ̄ with
only simple eigenvalues. This justifies to assume mi = 1, i = 1, . . . , n in the following. Thus
s = n and Λ̄ = Λ.

A necessary condition for (9) being an extremum on the level set L(λ) can be derived by
means of the Lagrange multiplier method. Let us reformulate the non-quadratic constraint
λ(v) = λ as a quadratic normalization condition, i.e. (v, v) = 1, and the quadratic constraint
(v,Λv) = λ. Then we consider the Lagrange function

L(v) =
(v,Λ(Λ− σI)−2v)
(v, (Λ− σI)−2v)

+ µ ((v, v)− 1) + ν ((v,Λv)− λ) ,

with µ and ν being the Lagrange multipliers. Any constrained extremum in v has to satisfy
the equation

∇L(v) =
2

(v, (Λ− σI)−2v)
(Λ− σI)−2 [Λ− λ′I] v + 2µv + 2νΛv = 0 (10)

with λ′ := λ((Λ− σI)−1v). Since v is not an eigenvector (as λ 6= λi, i = 1, . . . , n), there are at
least two nonzero components vk and vl with k 6= l. Take k as the smallest index with vk 6= 0
and l as the largest index with vl 6= 0. Then λk < λ′. We determine the Lagrange multipliers
µ and ν from Equation (10) by solving the linear system(

1 λk

1 λl

)(
µ
ν

)
=

1
(v, (Λ− σI)−2v)

(
(λ′ − λk)(λk − σ)−2

(λ′ − λl)(λl − σ)−2

)
(11)
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having a non-vanishing determinant. Its solution reads

µ =
[
σ2λ′ + 2σ(λkλl − λkλ′ − λlλ

′) + λ2
l (λ

′ − λk) + λ2
k(λ′ − λl) + λkλlλ

′] /C,

ν = −
[
σ2 − 2σλ′ + λ′(λk + λl)− λkλl

]
/C,

with C = (v, (Λ − σI)−2v)(λk − σ)2(λl − σ)2. To show that v has exactly two nonzero
components, i.e., vj = 0 for j 6= k, l, we insert µ and ν in the jth component of (10). We
write (∇L(v))j = α(σ)p(σ)vj , where α(σ) = (λl − λj)(λk − λj)/(C(λj − σ)2) 6= 0 and

p(σ) = 2σ3 − σ2(λk + λl + λj + 3λ′) + 2σλ′(λk + λl + λj) + λjλkλl − λ′(λkλl + λkλj + λlλj).

It remains to be shown that p(σ) 6= 0, where by assumption σ ∈ [0, λ1). First notice that
0 ≤ σ < λ1 ≤ λk < λ′ < λl and λk < λj < λl as well as limσ→−∞ p(σ) = −∞. Moreover, the
local extrema of p(σ), i.e., p′(σ) = 0, are taken in λ′ and (λk + λl + λj)/3 and are both larger
than λk. Finally, we conclude with

p(λk) = −(λj − λk)(λl − λk)(λ′ − λk) < 0,

that it is impossible for the third order polynomial p(σ) to take a zero in [0, λ1).
Thus the further (“mini-dimensional”-) analysis can be restricted to the 2D space spanned by

the eigenvectors to λk and λl. The nonzero components vk and vl are determined by (v, v) = 1
and (v,Λv) = λ. We obtain

v2
k =

λl − λ

λl − λk
, and v2

l =
λ− λk

λl − λk
. (12)

Inserting (12) in λ′ = λ((Λ− σI)−1v) results in

λ′ = λ′(λk, λl, λ, σ) =
σ2λ− 2σλkλl + λkλl(λk + λl − λ)

σ2 − 2σ(λk + λl − λ) + λ2
k + λ2

l − λ(λk + λl) + λkλl
(13)

The differentiation of λ′ with respect to λk and λl together with 0 < σ < λ1 ≤ λk ≤ λi <
λ < λi+1 ≤ λl ≤ λn results in

∂

∂λk
λ′(λk, λl, λ, σ) =

[2(λk − σ) + λl − λ] (λl − λ)(λl − σ)2

(σ2 + 2σ(λ− λk − λl) + λ2
k − λkλ + λkλl − λlλ + λ2

l )2
> 0

∂

∂λl
λ′(λk, λl, λ, σ) =

[2(σ − λl) + λ− λk] (λ− λk)(λk − σ)2

(σ2 + 2σ(λ− λk − λl) + λ2
k − λkλ + λkλl − λlλ + λ2

l )2
< 0

Hence λ′(λk, λl, λ, σ) takes its maximum in λ′(λi, λi+1, λ, σ), whereas its minimum is taken in
λ′(λ1, λn, λ, σ), i.e.

λ′(λ1, λn, λ, σ) ≤ λ((Λ− σI)−1v) ≤ λ′(λi, λi+1, λ, σ). (14)

Reformulation of (14) using (13) yields

λ1 + λnR1,n(λ)
1 + R1,n(λ)

≤ λ′ = λ((Λ− σI)−1v) ≤ λi + λi+1Ri,i+1(λ)
1 + Ri,i+1(λ)

(15)

with

Ri,i+1(λ) = ρ2
i,i+1∆i,i+1(λ) =

(
λi − σ

λi+1 − σ

)2
λ− λi

λi+1 − λ
(16)
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and

R1,n(λ) = ρ2
1,n∆1,n(λ) =

(
λ1 − σ

λn − σ

)2
λ− λ1

λn − λ
. (17)

The right inequality of (15) reads

λ′ + λ′ρ2
i,i+1∆i,i+1(λ) ≤ λi + λi+1ρ

2
i,i+1∆i,i+1(λ),

from which (6) follows immediately. Reformulation of the left-hand inequality of (15) proves
(7) analogously.

For σ = 0 the inequality (14) simply reads

λ1λn(λ1 + λn − λ)
λ2

n − (λ− λ1)(λ1 + λn)
≤ λ′ ≤ λiλi+1(λi + λi+1 − λ)

λ2
i+1 − (λ− λi)(λi + λi+1)

, (18)

which proves (8).
The estimates (6) and (7) are derived in the 2D invariant subspaces to either λi, λi+1 or λ1,

λn and they are attained (by construction) exactly in these invariant subspaces. Therefore,
(6) and (7) are each attained in a vector whose components are defined by (12) and whose
Rayleigh quotients are given by (13). 2

Remark 2.3. Theorem 2.1 does even hold under the assumption σ ∈ [0, λ1+λ2
2 ) \ {λ1}; but

here we avoid additional technicalities in the proof of Theorem 2.1. The choice σ ∈ (λ1,
λ1+λ2

2 )
covers the case of the Rayleigh quotient iteration converging to λ1.

By Theorem 2.1 the Rayleigh quotients λ(x(k)) form a monotonously decreasing sequence
which is bounded from below by λ1. Therefore, the difference of consecutive Rayleigh quotients,
i.e., λ(x(k))−λ((A−σI)−1x(k)), converges to 0. In the next lemma the latter difference is shown
to be an upper bound for a certain norm of the residual vectors which proves convergence of
x(k) to an eigenvector.

Lemma 2.4. For y ∈ Rs, y 6= 0 let the residual vector be given by r(y) = Ay − λ(y)y and
let ‖y‖2

A−σI = (y, (A − σI)y). On the assumptions of Theorem 2.1 for any x ∈ Rs with
‖x‖2 = (x, x) = 1 it holds that

‖r((A− σI)−1x)‖2
A−σI ≤ λ(x)− λ((A− σI)−1x). (19)

Proof. For any nonzero z ∈ Rs it holds 0 < σ < λ1 ≤ λ(z). Multiplication of the last inequality
with the (due to the Cauchy inequality non-negative) factor (A2z, z)− λ(z)(z,Az) leads to

σ
(
(A2z, z)− λ(z)(z,Az)

)
≤ λ(z)

(
(A2z, z)− λ(z)(z,Az)

)
.

The latter inequality is equivalent to

‖r(z)‖2
A−σI

‖(A− σI)z‖2
≤ λ((A− σI)z)− λ(z) (20)

which can be verified by writing the norms and Rayleigh quotients in (20) in terms of (z,Akz),
k = 0, 1, 2, 3. Inequality (20) proves (19) using the substitution x = (A−σI)z/‖(A−σI)z‖. 2

By Lemma 2.4 the residual vectors r(x(k)) of inverse iteration (1) converge to the null vector.
Thus the iterates x(k) converge to an eigenvector of A.
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Remark 2.5. Theorem 2.1 is restricted to symmetric positive definite matrices. To give an
example of an indefinite matrix, let A = diag(−3, 1) and x = (1, 2)T . Then

λ(A−1x) =
33
37

> λ(x) =
1
5
,

since the component corresponding to the eigenvalue −3 is damped out most rapidly. Hence
inverse iteration for indefinite symmetric matrices is no longer a descent scheme for the
Rayleigh quotient.
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