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Abstract

Multivariate curve resolution techniques are powerfulddo extract from sequences of spectra of a chemical reactio
system the number of independent chemical components,atsbciated spectra and the concentration profiles in
time. Usually, these solutions are not unique because afdtlled rotational ambiguity.

In the present work we reduce the non-uniqueness by enfpthim consistency of the computed concentration
profiles with a given kinetic model. Traditionally, the kiieemodeling is realized in a separate step which follows
the multivariate curve resolution procedure. In contraghts, we consider a hybrid approach which combines the
model-freecurve resolution technique with threodel-basedinetic modeling in an overall optimization. For a two-
component model problem the range of possible solutioneatyaed and its reduction to a single, unique solution
by means of the hybrid kinetic modeling is shown. The algonireduces the rotational ambiguity and improves the
quality of the kinetic fitting. Numerical results are als@gented for a multi-component catalytic reaction system
which obeys the Michaelis-Menten kinetics.

Key words: chemometrics, factor analysis, kinetic modeling, pure gonent decomposition, spectral recovery,
hydroformylation.

1. Introduction tors. Even then there are still many admissible solu-
tions. However, most of these solutions are not consis-
Computerized spectroscopic measurements of a_tent with a_pre-given kinetic model. There_fore our z_iim
chemical reaction system can produce enormous'slto combine a mode[-fre_e curve r(.esollunon technique
amounts of spectroscopic data. The information con- With @ model based kinetic regularization. The regu-
tent of these data is to be recovered by means of numer-larization approach allows to compute those admissible
ical algorithms. Self-modeling curve resolution tech- SPectral and concentration factors which are consistent
niques can be used to detect the number of indepen-W'th _the k|net|<_: model. This considerably reduces the
dent chemical species, their absorption spectra as wellfotational ambiguity.
as their concentration profiles in time. Sometimes these Such a combination of a model-free curve resolution
computed concentration profiles are fitted to a kinetic technique with a model-based kinetic regularization is
model in a separate step which follows the factoriza- not new and has been applied to various problems; see,
tion process. This approach of arposteriorikinetic e.g., the fundamental works of Juan, Maeder, Martinez
modeling has some disadvantages. The main problemand Tauler [14], Haario and Taavitsainen [9], and the
is that self-modeling curve resolution techniqueiesu references therein. However, in [14] the result of a
from the so-called rotational ambiguity of the solution. hard-model kinetic fitreplacesthe concentration fac-
Typically, there is a continuum of mathematically ad- tor within an MCR-ALS algorithm; this algorithm com-
missible solutions. However, most of these solutions do bines soft- and hard-modeling. In contrast to this we
not contain useful information on the chemical system. do not replace the concentration factor by its kinetic-
A successful strategy to reduce this non-uniqueness ismodel-fit but use the model-error for a regularization of
to impose further restrictions on the solutions. e.g., the reconstruction functional, see Section 3.2. Further,
those on the smoothness or on the correlation of the fac-the focus of this paper is on an explicit representation
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of the attainable reduction of the rotational ambiguity Problem 1 (Non-negative matrix factorization)Given
due to a kinetic regularization. Numerical results are a non-negative matrix Bz R*", whose rank equals s,
given for a model problem and for the homogeneously non-negative matrix factors € RS and Ae R>" are
catalyzed hydroformylation process, also known as oxo to be determined so that

synthesis.
D=CA

2. Model-free curveresolution For an arbitrary non-negative matr Problem 1
may have no solution. Examples of such matrices with-
out a non-negative factorization have been presented
in [4, 28]; one can construdtby-n matricesD with

2 < rank@) < min(k,n) which do not have a non-
negative matrix factorization. Fortunately, our situatio

is somewhat dierent. The Lambert-Beer law (1) says

We consider multivariate data to be given in the form
of a time-sequence of spectra of a non-stationary chem-
ical system. As already said, the task of a model-
free analysis is to determine the number of indepen-
dent chemical species, which are often the pure com-

ponents of the chemical reaction system, and also thelrthat D originates from the spectroscopic measurement

concentration profiles in time and the associated absorp- . S
on a chemical system whose intrinsic components are

tion spectra. There are several monographs and review. e .
papers on this topic, see e.g. [12, 17, 18, 19] and theJust specified byC andA. Hence for spectroscopic data

: D the approximate existence of a non-negative matrix
references therein.

The number of separate spectra is denotekl iBach factorization appears 0 t_)e guaranteeq. .
. . : The factorization ofD into C and A is not unique.
spectrum is formed of absorption values given aep-

; . : It is well known that any solution of the factorization
arate frequencies. These data are written in the rows of . . .
ak x 1 data matrixD € RS If the chemical reaction problem is non-unique with respect to the arrangement

: . and positive scaling of the columns 6fand the rows
system contains a number sEomponents, i.e., the re-

actants and products, then Lambert-Beer’s law says thatOf A. This type of non-unIqueness 1S npt really diel
D has the form cult problem. In contrast to this, there is a further sort

of non-uniqueness. Nearly always a continuum of so-
D=CA (1) lutions exists which can not be reduced to a single ref-

erence solution by a rearrangement and rescaling of the
Nonlinearities and error terms are ignored in (1). The matrix factorsC andA. For such problems several ana-
columns of the matrixC € R¥*S are the concentration lytical methods and numerical methods have been de-
profiles along the time axis of the components. The veloped [1, 6, 7, 13, 16, 18, 19, 22, 23, 24]. Some-
rows of the matrixA € R>" are formed by the spectra times it is possible to give a visual representation of
of these pure components. For a practical problem the the continuum of possible solutions. Such an approach
matrix factorizatiorD = CAis notknown. Thetask ofa  for a three-component system has recently been pre-
model-free curve resolution technique is to compute the sented by Golshan, Abdollahi and Maeder [7], see also
matrix factorization (1) without prior knowledge of the  [2, 3, 20, 25]. The decisive question is to determine the
chemical system. The mainficulty is that a plethora ~ chemically relevant solution within the range of feasi-
of matrix factorsC andA exist whose product equals ble (mathematically admissible) solutions. Usually, a
In the best case there is only one chemically meaningful multivariate curve resolution technique does not com-
solution which is to be determined by means of mathe- pute the range of these admissible solutions. Instead
matical tools. Next we consider non-negative solutions, regularization techniques the form of so-callecsoft
which is a first step to reduce the range of admissible constraintsare used to steer the factorization algorithm.

solutions. In this way one desires to construct the chemically rel-
evant and correct factorization. Such a regularization is
2.1. Non-negative matrix factorization also part of the factorization tool PCD (Pure Component

The most restrictive and most useful demand on a fac- P&COmPposition) which is explained next.
torizationD = CAis that only non-negative solutions o
can be accepted for the concentration fa@and also ~ 2-2- Factorization tool PCD
for the pure component spectra factar Negative en- Typically the spectral data matri® includes mea-
tries of C and A do not have a physical interpretation. surement errors. Further, the Lambert-Beer law (1) is an
These restrictions give rise to define the following non- idealization which neglects any non-linearities. There-
negative matrix factorization problem. fore we aim at amapproximate reconstruction CAf
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D in a way thatD — CAis close to the zero matrix.
There are other useful restrictions on the matrix fac-
torsC andA which are dfferent from the non-negativity
conditions. To meet all these conditions we reformulate
Problem 1 as a minimization problem for the function

F:ROSxR™" > R,

p
F(C.A) =IID-CAIZ + Y %f(C.A).
i=1

(2)

Therein||-||r denotes the Frobenius matrix norm, which
is the square root of the sum of squares of all matrix el-
ements [8]. Furthep is the number of penalty and reg-
ularization functiondf; which are weighted by positive
constantsy; whose numerical values are given below.

These penalty functions are used to enforce to a large

extent the hard constraints on the solution. Further reg-
ularization functions with typically smaller weighting
constantsy; compared to the penalty functions can be

so-called rotational ambiguity of the solution. The next
step is a minimization ofs with respect to the matrix
elements off . For a proper treatment of perturbed data
it may appear advisably to work with a matiixe R
with z > s; then one has to substitute! by its pseudo-
inverseT* [8]. The use of [, T*) admits to get access
to additional singular vectors for a proper reconstruc-
tion of C andA. The choice of the regularization func-
tions and their weights factoss is important. Negative
entries inC or A are penalized by, and f,. For the
problems in Sections 4 and 5 we uge= y, = 100.
Hard constraints penalizing negative entrieCiror A

are much stronger weighted than soft constraints like
the smoothness of the concentration profiles/anib-
calized, uncorrelated spectra; see also [18, 19, 23].

3. Kinetic modeling

A successful pure component decomposition can be

used to give advantage to solutions which respect the used to extract additional information on the chemical

soft constraints. For details on those functidnahich
are used in the PCD code see [23].

Typically a first step to solve the minimization prob-
lem is to compute a singular value decomposition
(SVD) [8] of the data matriXD € R*". The SVD reads

D=UxV'

with orthogonal matricesl € R andV € R™". Fur-
ther,Z € R*" is a diagonal rectangular matrix with

Ei,j 2{

The numbersr; > o, > --- > 0 are the singular values.
A low-rank approximatiorD of D is accessible from
the SVD if all singular values which are smaller than a
proper threshold are ignored. We obt&in= USV with
the sub-matricet) = U(;,1 : s) andV = V(;,1 : 9),
which are formed from thefirst columns ofU andV,
and thes x ssubmatrixt = £(1 : 5,1 : s) of =. This
low-rank approximation still contains the characteristic
information on the chemical system and opens an algo-
rithmic way to solve the optimization problem for the
functionF.

This approach, which has already been used by Law-
ton and Sylvestre [16], allows us to approximbtesee
(2), in the form

fori =,
else

0—i7

09

G:R™ SR, G(T)= FUET LTV,  (3)

Therein a matrixI € RS and its inversd 1 are used.

system from the concentration profiles since these func-
tions encode useful information on the kinetics of the
chemical reaction. In a subsequent step the kinetic con-
stants of a given kinetic model can be fitted to the con-
centration profiles. However, the non-uniqueness or ro-
tational ambiguity of the factorization may result in a
multitude of concentration profiles which usually do not
allow an accurate fitting to a pre-given kinetic model.
Therefore one can try to combine thdel-fredactor-
ization approach with model-basedhemical kinetic in
order to steer the optimization procedure within the set
of feasible factorizations to just those solutions which
are consistent with the kinetic model [9, 14]. Mathe-
matically this can be realized by adding the squared er-
ror of a model fitting as a further regularization term to
the functionF givenin (2).

Typically the kinetics of a chemical reaction can be
modeled by a system of ordinaryfiéirential equations
in the form

(4)

The vector-valued function(t) represents the concen-
trations of the chemical species at a titndf a vector
c(ty) of initial concentrations at a timg is given, then
(4) defines an initial value problem. Equation (4) is as-
sumed to hold for aft in an interval {;, teng. The right
hand side of (4) is formed by the rate equations of the
chemical reaction. The functiognalso depends on the
vectorK of the kinetic constants. The problem of a ki-
netic modeling is to determine just this vect¢r How

d
d_tc(t) = g(t, c(t), K).

These matrices are the key to represent and to treat thethis can be done is explained next.
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3.1. A-posteriori kinetic modeling Then the minimization ofy;, is a part of the minimiza-

tion of the functionG. By combining (2), (3) and (5) we
The “traditional” approach to a kinetic modeling  ptain

which can be considered as arposteriorimodeling
includes two steps. In a first step the concentration pro-
files C are computed by a pure component decomposi-
tion. As mentioned above any decomposit@r= CA .
includes a scaling-ambiguity in the sense that a diag- |f G attains a minimum in{*, K*), then the pro-
onal matrixA with positive diagonal elements can be cess of a kinetic-model- based curve resolution results
introduced so thab = (CA-1)(AA). Because of this in C = US(T")™, A=T" V' and a kinetic model (4)
Sca”ng_ambiguity it appears to be possib|e and conve- with kinetic ConstantSK*. In other words we use the
nient to normalize all the absorption spectra, that are the Process of kinetic modeling as a further regularization.
rows of A, in a way that their maximum equals 1. Such The usage ofii, for a regularization appears to be the
a normalization implicitly determines the scaling of the natural approach; we minimizZ&in T andK simultane-
columns ofC. Here we use a ffierent normalization, ~ ©ously. For the minimization we use the NL2SOL code
name|y, we scale the columns 6fin a way that the [5] which is based on quasi -Newton and Gauss-Newton
concentration profiles are consistent with experimental algorithms. Alternatively, but we do not use such a strat-
data like initial concentration and mass balances, see €8y, 0ne might minimiz&(T, K) in an alternating itera-
Sections 4 and 5. The matr® with proper|y scaled t|0n then separate minimization StepSTrand inK are

G(T.K) = FUET LTV + yian fin (). (6)

columns is denoted b@®). repeated until convergenceTnand inK is achieved.

In a second step these scaled concentration profiles For the approximate solution of the ordinarytdren-
can be used to compute the kinetic constafitin a tial equation (4) numerical solvers are to be applied. For
way that the solution of (4) is a proper fitting to the non-stif problems we use a high-order explicit Runge-
concentration profile€®. SinceC® is ak x s ma- Kutta solver like the Dormand-Prince method with step

trix we evaluate the solutiog(t) of (4) on the time grid ~ size control [11]. For sfi problems implicit Runge-

t1 <t <--- <t = tene Theset; are just the points  Kutta procedures are to be used like the Radau methods
in time which have been used to form the data matrix [10]. In our PCD code we use Radau IIA methods with
D. If C are the components of the mat@® and  the variable orders 5, 9 and 13 together with step-size
C(Ode)(K) € R¥s is the solution of (4) evaluated on the controf.

grid (t1,...,t), then

A
fian : R —> R, 4. A two-component mode! problem

k s
fin(K) = D D (C-CE®K)>  (5)

i=1 j=1 In order to show that a regularization by means of a

kinetic model is a successful strategy we start with an
analysis of a two-component model problem. For this
problem the continuum of possible solutions is acces-
sible; we show that the hybrid approach using (6) can
reduce the ambiguity.

is the squared modeling error for a given vedfoe RY

of kinetic constants. We denote By the vector of opti-

mal kinetic constants which minimizeg, so thatC®

andC©9)K*) have the smallest distance (component-

wise sum of squares). The vectdt can be computed K

by a proper numerical minimization procedure. We assume a first order kineti¥s— Y. The associ-
ated concentration profiles for the componexandY

o re taken
3.2. Model-based regularization are taken as

The a-posteriori kinetic modeling has some disadvan- cx(t) = exp(Kt), cy(t) = 1-expKt)  (7)

tages. Whenever a continuum of admissible factoriza-
tions exists, then a curve resolution technique will often with a kinetic constanK > 0. The absorption spectra
provide a concentration fact@ which might not allow
a very accurate kinetic fitting with the kinetic model. As
explained above it appears to be preferable to apply the  1the RADAU software in FORTRAN is available from
error functional (5) as a further penalty function to (3). http;/www.unige.cli~haireysoftware.htmi
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Figure 1: Concentration profiles (left) and absorption speEenter) of the model problem. Total absorption of thetame (right).

of the two componentX andY are set to be matrix (8). The starting pointis a singular value decom-
. ; positionUZVT of D. As rankD) = 2 only those left and
(4-50 (4-200 right singular vectors are needed which correspond to
ax(1) = 2expt-————=) + L.3exp————), . -
x(1) e 30000 )+ Pt 1000 ) non-zero singular values. Thereforelét= U(:,1 : 2),
~ (1-150P, 1 (1-170% $=31:21:2)andV = V(;,1: 2)sothaD = GEV'
av(1) = exp( 100 )+ 5 exp( 30000 ) if numerical rounding errors are ignored. This factor-
(1 - 200y (1 - 250¥ ization of D allows to represent the range of admissible
+2expt 100 ) +exp- 100 )- non-negative matrix factorizations. By inserting a reg-

_ ) ular transformation matri¥f € R? and its inverse we
According to Lambert-Beer’s law the absorption spec- gptain

trum of the mixture at a timeand wave-lengthi is
c=U0STL, A=TV".
d(t, 1) = cx(tax(4) + cy(tav(2).
Only those regulafF are considered which resultin non-
negative matrice€ andA.

The assumptiowx(0) = 1 determines the unknown
calibration constant of the first column & the un-
known scaling constant of the second columiCatan
be determined in the least-squares sense from the con-
straint thatcy(t) + cy(t) = cx(0) = 1 for all t. Hav-
ing fixed the row ofC as (1 0) the wanted pure com-
ponent spectrum aX is just the first ronD(1,:) of D,
i.e.A(L,:) = D(1,:) since at = 0 only the componerX
is present. Therefore the first row of the transformation
matrix T is determined; the real constaatgndg in

The functionsc(t), a(2) andd(t, 1) with K = 0.01 are
shown in Fig. 1.

An equidistant grid on € [0,200] anda € [0, 500]
with k = 201 andn = 501 is used to construct the data
matrix D of absorption values. Thus the matilix €
R20%501 reads

Di,jZd(ti,/lj), i=1,...,20Lj=1,...,501L (8)

The data matrixD has the rank 2. Therefore the
wanted matrix factors ar€ € R20>2 and A € R250L
Further, we assume the initial concentrations to be given
ascy(0) = 1 andcy(0) = 0, i.e. the first row ofC is the o B
row vectorC(1,:) = (cx(0), cy(0)) = (1, 0). T(x) = ( 1 x )

Next the mathematical problem is summarized.

Given: — D e R201x501,
— Number of components = 2 = rank(D)
(by construction).
— Initial concentrationsy(0) = 1, cy(0) = 0.
Aim: — A non-negative decompositidh = CA
— The kinetic parametd.

can be computed fromy(1,:) = D(L,:) = T(L,:)V'. As
the second spectrumy(2, ;) can be scaled in any (non-
zero) way, the second row @fcan be set to (Ix); Gol-
shan, Abdollahi and Maeder use the same approach in
Eq. (7) of [7]. Thusx € R is the only remaining degree
of freedom.
We note that the use of (%), instead of working
with (=1, X), is justified by the Perron-Frobenius the-
Next we present an analytic representation of the orem [21]. This theorem allows to assume that the first
range of feasible non-negative factorizations of the data singular vectorsJ(:, 1) andV(;, 1) which correspond to
5
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the largest singular value of the non-negative data ma-

trix D are non-negative. Hence, m; > 0. Further,
the orthogonality oV (:,1) andV(;, 2) guarantees that
min; Vi2 < 0 < max V... Therefore a positive contri-
bution fromV(:, 1) is required in order to construct a
non-negative matriA. See also [16] for the use of the
Perron-Frobenius theorem.

This results in a one-parameter representation of the

absorption and concentration matrices which reads

AlX] =( ¢ ﬁ)\?T,
C[X] = UiFl—ﬂ( _Xl _(;B )

To guarantee non-negativeness of the elements in the

second rowA(2, :)[X] the parametex has to satisfy

Vi1

Vi1 .
maXx—=— < X< min —
i=L,..n, Vi2 i=1..n,

9)
The non-negativeness of the element€Ef) results in

the following restrictions

B

O'ZUi,Z i

x> andx > max—="2 if US(-B,2)" >0, (10)
@ i oUig
o0, o~
x<® andx < min 2222 it U$(-8,a)T <0.  (11)
a i o1Ujs

All these restrictions cannot reduce the range of ad-
missible solutions to a single, unique solution. Instead
for the whole rangex € [0.4286 0.9405] non-negative
solutions exist. The possible solutio@%:, 1)[X] and
A(2,:)[X] are shown in Fig. 2.

4.2. Regularization with a kinetic model

Next we follow the strategy of a model-based regular-
ization as explained in Sec. 3.2. The kinetic model (7) is

taken as a part of the penalty function, see Eqgns. (5) and2rpitrarily x =

(6). This defines in a non-linear least-squares problem
for the two parametersandK. A numerical computa-
tion for the given test problem shows that these param-
eters are confined as follows

(x, K) € [0.4286 0.9405]x (0, o).

For eachx € [0.4286 0.9405] we obtain an admissible
solution of the factorization problem - however for most
of the x this solution does not reproduce the original
spectra and concentration profiles.
In order to reconstruct the correct solution we use an
error functional measuring the error between a matrix
6

Continuum of possible solutiorts
1

ci(t)

0 50 100

t

150 200

Continuum of possible spectea

0 100

200 300
A

400 500

Figure 2: Continua of solutions fag = C(:, 1)[x] andaz = A(2, :)[X].

factorC e R?°%2 and the solutiol©(°%® of (4). For the
model problem the solution of (4) is explicitly given in
(7) so thatfyi, reads

400

fian 1 RZ > R, (%K) = " (@i(x K))%
i=1

(12)

This function is to be minimized. Therein tigeare

g6 K) =Cial] - CY™(K),  i=1,...,200
Gis200(% K) = Ci2[X - CG(K), i=1....,200

Note that the concentration profi:, 2) also depends
on x since the transformatiof couples the scaling of
C(:, 2) to that ofC(:, 1)[X].

Fig. 3 shows the regularization function&d, for
K € (0,0.025]. To illustrate that arbitraryx €
[0.4286 0.9405] can result in concentration profiles
which are not consistent with the kinetic model we take
0.5 and compute the optimal kinetic fit-
ting which results inK = 0.012382. For this solution
the hard constraints, namely the non-negativit¢ @nd
A, are satisfied; the error on these parts of the penalty
functions is less that 18°. However, the concentra-
tion profiles are only poor approximations of (7) where
K = 0.01. The kinetic-model-errofy,(K), as given
by (5), is about 2, see Fig. 3. Next we show that the
kinetic regularization is the key for a correct reconstruc-
tion of C andA.

Figure 3 shows that a kinetic-model-error close to 0
can be achieved. And in fact, the hybrid algorithm us-
ing the kinetic regularization (12) can provide the cor-
rect solution. The numerical computation yiels =



Series of spectra (2D plot)
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o
w

0.6
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04 02 2100 tlﬁ%% [min] 3440 3460 3450 tlrzﬁ?é [min]
wave number [fcm] wave number [fcm]
0 0.5 0.6 0.7 0.8 0.9 G0 50 100 150 200
X t Figure 4: Upper left: Complete series of spectra after bamked sub-

. . . traction; Further plots: Characteristic bands after ZEm®-<correction.
Figure 3: Upper left: The functiorfiin(x, K); Upper right: The exact

decomposition with optimize& for x = 0.5 results in a poor fitting.
Lower left: The kinetic fitting errorfiin (X, Kopy) With optimal Kqpt =

Kopi() @s @ function of. Minimum in x* = 0.77753. Lower right: internal standard for GC. The independent concentra-
The concentration profiles for the globally optimdland K* which tion profiles of the product aldehydes obtained from GC
reproduces the origina{t) shown in Fig. 1. analysis were found to fit well to the data derived from

FTIR spectroscopy. To get access to the concentration
profiles of the catalytically relevant rhodium complexes,

777 h ith<* = 0. 73 which i )
0 53 together wit 0.0099973 which is a very appropriate spectral data were selected and treated by

imation of th i i ig. 3.
good approximation of the desired solution, see Fig. 3 the PCD algorithm.

For the artificial two-component model problem o this problem the data matrix is built from
the model—based regularization has proved as a well- 1o45 spectra, each with 13482 spectral channels.
Workmgtool_to steer the curve resolution method to the The curve resolution algorithm makes use only from
correct solution. three decisive spectral bands namely [158D1]cm?,

[196Q 2120]cm?! and [34003490]cn. Further, the
5. Rhodium-catalyzed hydroformylation background spectrum, i.e., the spectrum of the solvent
and n-hexane, is subtracted and the zero-line is cor-

The rhodium catalyzed hydroformylation of 3,3- rected. This results in a reduced matiixe R0451170
dimethyl-1-butene, forming 4,4- dimethylpentanal and The complete series of spectra after zero-line correction
2,3,3-trimethylbutanal in a constant 9:1 ratio, has been as well as the three isolated spectral bands are shown in
studied over the full conversion range. The reac- Fig. 4.
tion was performed in n-hexane solvent atGPwith The singular value decompositionBfprovides valu-
p(CO) = 1 MPa and p(H) = 2 MPa. The cata- ableinformation on the number of independent species.
lyst, a hydrido rhodium carbonyl phosphite complex, The first eight left and eight right singular vectors and
was formed from [(acac)Rh(Cg))and tri(2,4-di-tert.- also the twenty largest singular values are shown in
butylphenyl)phosphite prior to the catalytic reaction. Fig. 5. There are four smooth or non-oscillatory left sin-
The individual rhodium, phosphite and olefin concen- gular vectors and at least four singular values which are
tration applied were 3.0, 6-10° and 09 moldni3, clearly separated from the remaining set of smaller sin-
respectively. Catalyst preformation, the progress of gular values. The noise pattern of the left singular vec-
the organic reaction as well as catalytic intermediates tors with the indexes,5. ., 8 does no appear for the cor-
have been monitored by in situ FTIR-spectroscopy. For responding right singular but occurs for larger indexes.
that purpose, the reaction solution was circulated be- Our explanation is that this caused by the background
tween the batch reactor and a pressure tight transmis-subtraction and the zero-line correction, which each op-
sion cell with the windows material ZnS placed inside a erate along the frequency axis.

Bruker Tensor 27 FTIR spectrometer. The background The system contains at least four independent reac-
spectrum used for correction consisted of the solvent tants which determines the dimensions of the matrix
n-hexane and dodecane, with the latter serving as anfactorsC € R194%4 and A € R¥*!70 The curve res-
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olution technique should compute these factors so that Concentration profiles

D ~ CA Further, we assume a Michaelis-Menten ki-
netics [15]. The vector of kinetic constarisis to be
computed in a way that the solution of the ordinary dif-

0.25
N
02t

0.15]

ferential equation fits the concentration profi@$om 04

the pure component decomposition in the least-squares 0.05 )

sense. 0 200 400 600« 800 1000
In Sec. 5.1 a non-negative matrix factorizationbf time [min]

is used to comput€ andA without any kinetic model- Absorption spectra

ing. The resulting mathematically admissible factoriza-
tion is not consistent with the Michaelis-Menten kinet-
ics. Themodel-based regularizatiom Sec. 5.2 is the

key to compute proper pure component spectra together

with concentration profiles which are compatible with AR (PN

the Michaelis-Menten kinetics. /\
,_A/\M

5.1. Results of an SMCR analysis Figure 6: An admissible non-negative decomposition witmalsre-

construction error, smooth concentration profiles andlitbed peaks
A first approach to solve the chemometric prob|em so that the integral of the absorption spectra is small.
for the Rhodium-catalyzed hydroformylation is to com-
pute a non-negative matrix factorization as defined by
Problem 1 in Sec. 2.1. For the moment we ignore any factors
kinetic modeling. However, two soft-constraints are
used. First a norm of the discrete second derivative C'=CT,, A= T;lA.
of the concentration profiles is used as a penalty func-
tion in order to give an advantage to smooth concentra- ThereinT, is taken as a 4-by-4 matrix
tion profiles. Further, the discrete integral of the spec-

tra is taken for a regularization in order to favor local- 10 0 O
ized peaks in the spectrum. This soft-constrained non- . 01 0 O
negative matrix factorization can, e.g., be computed by To=la—aee; = o0 1 ol (13)
the PCD algorithm [23]. The weighting factor for the 0 0 —a 1

discrete-integral-regularizationjs= 1- 10~* whereas
the weighting factors for the penalization of negative en- wherel, is the 4x 4 identity matrix ands is its k-th

tries mCan@A are equal to 100. column. Ifa € [0,0.3127], thenC’ and A’ are still

As explained in Sec. 2.2, see also [23], the truncated non-negative matrices, which is easy to see by check-
singular value decomposition is used to reconstruct the ing the associated linear combinations of the columns
matrix factors by using six left and right singular vec- C(;,3) andC(;, 4) of C. Further,T:1 is a non-negative
tors, i.e.,s = 4 andz = 6. The results are shown in  5trix so thaty' = T-1Ais also ngn-negative.

Fig. 6. Therein the absorption spectra are normalized There are many further transformations which pre-

in a way that the maximum is set to 1. This implicitly - X
. ) ) .__serve the non-negativity of the matrix factors likg =
determines the associated scaling of the concentration T TP
rofiles I4 — Bese; with 8 € [0,0.4096] orTs = 14 — deqe; with
P ' ¢ € [0,0.16]. Various other combinations or products of
these factors may also work. Fig. 7 illustrates the ambi-
5.1.1. Non-uniqueness - a continuum of decompositionsguity of the solution due to the transformation (13).

It is easy to see that there is a continuum of non-  The so-called rotational ambiguity of the solution de-

negative solutions. One of these solutions is shown pends to some extent on the dimens®nlin case of

in Fig. 6. To the end of an illustration of a subset of multi-component systems with> 2 the knowledge of a
this continuum we construct a one-dimensional range of specific concentration profile does not determine the as-
these admissible solutions. This range is parameterizedsociated absorption spectrum and vice versa. However,
next by a single parametet For the explicit construc-  there are some special cases in which more information
tion we apply the following transformation to the matrix is available; see [26, 27].
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Figure 5: Singular value decomposition Bf Left: Eight left singular vectors corresponding to thegkst singular values. Center: Plot of the
largest twenty singular values in a semi-logarithmic pRight: Eight right singular vectors corresponding to thrgést singular values.

Concentration profileS(:, 3) along the time axis. This allows us to subtract the con-
tributions of the reactant and product from the spectral
data.

For the resulting catalytic subsystem which contains
the acyl- and the hydrido-complex a full uniqueness of
the decomposition cannot be attained. There are two
further ways to reduce the rotational ambiguity of the
system. First, we can exploit the fact that the concen-
tration of a specific component is zero at the end of the
reaction. Second, the rotational ambiguity can be re-
duced if the series of spectra contains a specific spectral
band in which only one component is absorbent while

J\/\/\/\L all other components show a small absorptivity.
VAN

Figure 7: Continuum of admissible non-negative solutiois3) and For our catalytic system the acyl complex disappears
A(4,) due to the transformation (13) applied to Fig. 6. at the end of the reaction and further an isolated peak in
the acyl-complex spectrum is located around 1996¢cm
) where the absorption of the hydrido complex is close to
5.1.2. l.\lon-u.nlquenes_s ) the_sub;ystem of catalysts zero. All this allows to reduce the ambiguity to a one-
The intention of this section is to show that even narametric continuum of admissible solutions. We ob-
the subsystem of catalysts contains some inherent ro-geye that the concentration profile of the acyl-complex
tational ambiguity. The spectra of this subsystem have 5,4 the absorption spectrum of the hydrido complex ap-
been gained by a subtraction of the reactant and prod-pear 1o be unique apart from small spectral perturba-
uct spectra from the original spectral data. Nextwe try tjons. However, the complementary concentration pro-
to present this ambiguity in detail which is a somewhat fijje of the hydrido-complex and the absorption spectrum
technical procedure. Later in Section 5.2 the full four- ¢ the acyl-complex show ane-parametric continuum

component problem is treated once again. Then the ki- of agmissible solutions. All these factors are shown in
netic regularization technique proves its benefits as ev- iy g

erything becomes very simple and the ambiguity disap-
pears.

In order to separate the catalytic subsystem we first Such an ambiguity makes aaposteriorikinetic fit-
state that the absorption spectra are known for the re-ting difficult. However, a model-based regularization
actant, namely the alkene, and the product being the appears to be a promising alternative to compute a
aldehyde. By using some isolated peaks of the alkene useful factorization and reliable kinetic constants as is
and aldehyde we also obtain their concentration profiles shown in the next section.
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Concentration profiles The problem is to minimize the functid®(T, K) as

given by (6). The result of the minimization are the op-
timal kinetic constant&* together with the transforma-
tion matrix T - the latter matrix determines the matrix
factorsC andA.

Within the optimization procedure a proper scaling of

200 400 600 800 1000 the concentration profiles, namely the column€plfias
time [min] to be determined in order to evaluate the kinetic-error-
Absorption spectra functional (15). This is done as follows: For the hydro-

formylation the mass balance of the organic species, that
are the olefin and the aldehyde, says taj1)+C(:, 4)
equals component-wise8951. Further, the mass bal-
ance of the Rhodium-containing species says @{at

,2) + C(;,3) equals in each componen9330- 1074,
These two equations allow to compute the four scal-

2030 2050 2150 @ng constan_ts of the four concentration profi@g, i),

Wave number [cm] i =1,...,4,in such a way that the properly scaled con-
Figure 8: Continuum of solutions of the catalytic subsyskeriit from centration profiles fulfill the mass balance equations in
the acyl- and hydrido-complex. Uniqueness of the concéatraro- the least-squares sense in the best way. We denote the
file of the acyl-complex and the spectrum of the hydrido campl resulting scaled concentration matrix 6% e R4,
Ambiguity in the form of a one-parameter continuum for the@n- For the numerical minimization of (6) an implicit

tration profile of the hydrido-complex and the spectrum & Hyl-

complex. Runge-Kutta method Radau Il1A with the variable orders

(5, 9, 13) has been used. The initial concentrations are
¢(0) = (0.8951, 2.93301074, 0, 0)". This computation
5.2. Regularization be means of a kinetic model works with C(©%) ¢ Rk<4 and with the regularization
To approximate the catalytic process we assume afunction
Michaelis-Menten model 4 k
K K fiin(C. K) = ) ICOC IR Y (€ - 5. (1)
C—D+B. =1 i=2

A+B

K_ L
' For fxin(C, K) we usedyyin = 100 as the weighting fac-

The olefin A forms with the catalyst B the catalyst- tor in G(T, K). The factorg|CE;, j)||I=X in (15) are in-
substrate adduct C. Then C decays into the aldehydetroduced to supply each of the concentration profiles
D and catalyst B. The kinetic constants afe = with the same weighting factoft; ||.. denotes the max-
(K1, K_1, Ky). For a kinetic analysis of the hydroformy-  imum norm of a vector [8].

lation process via in-situ HP-IR and HP-NMR spec-

troscopy see [15] and the references therein. 5.3. The numerical results
The concentration functions are the components of ~ The final numerical results of the pure component
the vector decomposition with embedded kinetic regularization is
shown in the Figs. 9 and 10. The absorption spectra
ca() can clearly be interpreted; for the details see [15]. In
ct) = cs(0) [15] the peaks of the acyl-complex at 2072¢nand at
ce(D 2079cm? are somewnhat better separated. Further, the
co(t) lowly concentrated catalytic species do not have an ab-
and the system of ordinaryftérential equations reads tsr?rptiofr'] peak at 1590crh This is just an artifact from
e olefin.
-Kicacg+Ko1Cc The optimization procedure yields the kinetic con-
-Kicacg+ Kogcc+Kace stants

d
g o0 = Kycace—Kocc—Kace (14) . AT
Ko o K* = (K, K* 1 K3)
. o = (45.228 Imin"tmolt, 0.3431 min?,
As explained in Sec. 4.2 the error of the kinetic mod- T
eling is used as a regularization function. 9.3145min~) .
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Concentration profiles

400 600
time [min]

200 800 1000

Absorption spectra
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Figure 9: Results of the pure component decomposition by.AGB

maximum of the absorption spectra is scaled to 1 which détesn
the scaling factors of the associated concentration psofil€olid

line: Olefin. Broken line: Hydrido-complex. Dash-dotteddi Acyl-

complex. Dotted line: Aldehyde.

The solution of the Michaelis-Menten system of ordi-

nary diferential equations (14) with these constants ac-
curately fits the results of the pure component decom-

position, see Fig. 10. The final errors for the four com-
ponents A, B,C,D) = (1,2,3,4) are
_IE® i) = ce
' ICOC i
e=(6.151073 912103 7.16.10°3, 7.67-1079).

749

Therein the Euclidean north- ||, is the square root of
the sum of the squares of the components of the error.

We note that the computation of the kinetic equilib-
rium constantk; andK*, is poorly conditioned. If we
consider only the dependence of the regularizing func-
tion fiin on the kinetic constantk;, K*;, and K; we
obtain for its gradient

2.9350107°6,
41869107,
-3.6041:10°

V(KT =

So the first order corrections in a Taylor expansion

Olefin and aldehyde

_o0s8
T
o
£06
c
9
S04
c
(]
2
50.2
o
0
200 400 600 800 1000
time [min]
-4 Acyl- and hydrido-complexes
%107 Yl y P

N
5

N

concentration [molt]
[
[l

o
5

o

200 400 600

time [min]

800 1000

Figure 10: Nearly perfect kinetic fitting of the solution dfiet
Michaelis-Menten equation (14) with the optimal kinetiastantsK*
(solid lines) and of the concentration profiles from the momponent
decomposition with model-based regularization (dottedd).

by the HessiarV?fy,(K*). Its eigenvalues arg;
2.195.10% 1, = 1.2513 andlz = 11071. The sec-
ond order term\(, V?fiin(K*)v) of the Taylor expan-
sion is more or less insensitive with respect to varia-
tions in the direction of the eigenvecter = (9.7798
101,2.0870107%, -4.17611075)" corresponding to the
smallest eigenvalug;. Furthery; has significant com-
ponents in the first and second components which are
associated witlK; andK_;. Therefore the numerical
computation of these kinetic constants appears to be
somewhat instable.

We further note that in Fig. 9 the formation of the
acyl-complex is not represented. The formation of this
complex is a fast reaction which proceeds in about the
first 6 seconds. However, it is possible to deduce the
behavior of the reaction system within the first minute
without spectral data by extrapolation [15].

6. Conclusion

Model-free multivariate curve resolution techniques
sufer from the rotational ambiguity of the solution.
This non-unigueness considerably increases with the
number of chemical components. Therefore a consid-

are small. The second-order correction are determinederable proportion of the computed factors of a multi-
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component system do not allow a useful chemical inter- [14] A. Juan, M. Maeder, M. Martinez, and R. Tauler. Comini

pretation. However, multi-component chemical systems
like catalytic reaction systems and their detailed mech-

anistic understanding are of major importance.
Any additional constraints or restrictions on the solu-

tion can help to reduce the non-uniqueness. A very use-

[15]

ful supplemental information is that on an underlying [16]

kinetic model and even an incomplete kinetic model can

be used. If the consistency in the sense of a small fitting [17]
error of a kinetic model with the concentration profiles

is used to regularize the reconstruction functional, then
this ambiguity can drastically be reduced. The resulting

numerical algorithm merges the model-free curve res- [18]
olution technique with the model-based kinetics within

an overall optimization process. In the best case reli-

[19]

able and unique multi-component factorizations can be [20]
computed.
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