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Abstract

Multivariate curve resolution techniques are powerful tools to extract from sequences of spectra of a chemical reaction
system the number of independent chemical components, their associated spectra and the concentration profiles in
time. Usually, these solutions are not unique because of theso-called rotational ambiguity.

In the present work we reduce the non-uniqueness by enforcing the consistency of the computed concentration
profiles with a given kinetic model. Traditionally, the kinetic modeling is realized in a separate step which follows
the multivariate curve resolution procedure. In contrast to this, we consider a hybrid approach which combines the
model-freecurve resolution technique with themodel-basedkinetic modeling in an overall optimization. For a two-
component model problem the range of possible solutions is analyzed and its reduction to a single, unique solution
by means of the hybrid kinetic modeling is shown. The algorithm reduces the rotational ambiguity and improves the
quality of the kinetic fitting. Numerical results are also presented for a multi-component catalytic reaction system
which obeys the Michaelis-Menten kinetics.

Key words: chemometrics, factor analysis, kinetic modeling, pure component decomposition, spectral recovery,
hydroformylation.

1. Introduction

Computerized spectroscopic measurements of a
chemical reaction system can produce enormous
amounts of spectroscopic data. The information con-
tent of these data is to be recovered by means of numer-
ical algorithms. Self-modeling curve resolution tech-
niques can be used to detect the number of indepen-
dent chemical species, their absorption spectra as well
as their concentration profiles in time. Sometimes these
computed concentration profiles are fitted to a kinetic
model in a separate step which follows the factoriza-
tion process. This approach of ana-posteriorikinetic
modeling has some disadvantages. The main problem
is that self-modeling curve resolution techniques suffer
from the so-called rotational ambiguity of the solution.
Typically, there is a continuum of mathematically ad-
missible solutions. However, most of these solutions do
not contain useful information on the chemical system.
A successful strategy to reduce this non-uniqueness is
to impose further restrictions on the solutions. e.g.,
those on the smoothness or on the correlation of the fac-

tors. Even then there are still many admissible solu-
tions. However, most of these solutions are not consis-
tent with a pre-given kinetic model. Therefore our aim
is to combine a model-free curve resolution technique
with a model based kinetic regularization. The regu-
larization approach allows to compute those admissible
spectral and concentration factors which are consistent
with the kinetic model. This considerably reduces the
rotational ambiguity.

Such a combination of a model-free curve resolution
technique with a model-based kinetic regularization is
not new and has been applied to various problems; see,
e.g., the fundamental works of Juan, Maeder, Martı́nez
and Tauler [14], Haario and Taavitsainen [9], and the
references therein. However, in [14] the result of a
hard-model kinetic fitreplacesthe concentration fac-
tor within an MCR-ALS algorithm; this algorithm com-
bines soft- and hard-modeling. In contrast to this we
do not replace the concentration factor by its kinetic-
model-fit but use the model-error for a regularization of
the reconstruction functional, see Section 3.2. Further,
the focus of this paper is on an explicit representation
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of the attainable reduction of the rotational ambiguity
due to a kinetic regularization. Numerical results are
given for a model problem and for the homogeneously
catalyzed hydroformylation process, also known as oxo
synthesis.

2. Model-free curve resolution

We consider multivariate data to be given in the form
of a time-sequence of spectra of a non-stationary chem-
ical system. As already said, the task of a model-
free analysis is to determine the number of indepen-
dent chemical species, which are often the pure com-
ponents of the chemical reaction system, and also their
concentration profiles in time and the associated absorp-
tion spectra. There are several monographs and review
papers on this topic, see e.g. [12, 17, 18, 19] and the
references therein.

The number of separate spectra is denoted byk. Each
spectrum is formed of absorption values given atn sep-
arate frequencies. These data are written in the rows of
a k × n data matrixD ∈ R

k×n. If the chemical reaction
system contains a number ofs components, i.e., the re-
actants and products, then Lambert-Beer’s law says that
D has the form

D = CA. (1)

Nonlinearities and error terms are ignored in (1). The
columns of the matrixC ∈ R

k×s are the concentration
profiles along the time axis of the components. The
rows of the matrixA ∈ R

s×n are formed by the spectra
of these pure components. For a practical problem the
matrix factorizationD = CA is not known. The task of a
model-free curve resolution technique is to compute the
matrix factorization (1) without prior knowledge of the
chemical system. The main difficulty is that a plethora
of matrix factorsC andA exist whose product equalsD.
In the best case there is only one chemically meaningful
solution which is to be determined by means of mathe-
matical tools. Next we consider non-negative solutions,
which is a first step to reduce the range of admissible
solutions.

2.1. Non-negative matrix factorization

The most restrictive and most useful demand on a fac-
torizationD = CA is that only non-negative solutions
can be accepted for the concentration factorC and also
for the pure component spectra factorA. Negative en-
tries ofC andA do not have a physical interpretation.
These restrictions give rise to define the following non-
negative matrix factorization problem.

Problem 1 (Non-negative matrix factorization). Given
a non-negative matrix D∈ R

k×n
+ , whose rank equals s,

non-negative matrix factors C∈ Rk×s
+ and A∈ Rs×n

+ are
to be determined so that

D = CA.

For an arbitrary non-negative matrixD Problem 1
may have no solution. Examples of such matrices with-
out a non-negative factorization have been presented
in [4, 28]; one can constructk-by-n matricesD with
2 < rank(D) < min(k, n) which do not have a non-
negative matrix factorization. Fortunately, our situation
is somewhat different. The Lambert-Beer law (1) says
that D originates from the spectroscopic measurement
on a chemical system whose intrinsic components are
just specified byC andA. Hence for spectroscopic data
D the approximate existence of a non-negative matrix
factorization appears to be guaranteed.

The factorization ofD into C and A is not unique.
It is well known that any solution of the factorization
problem is non-unique with respect to the arrangement
and positive scaling of the columns ofC and the rows
of A. This type of non-uniqueness is not really a diffi-
cult problem. In contrast to this, there is a further sort
of non-uniqueness. Nearly always a continuum of so-
lutions exists which can not be reduced to a single ref-
erence solution by a rearrangement and rescaling of the
matrix factorsC andA. For such problems several ana-
lytical methods and numerical methods have been de-
veloped [1, 6, 7, 13, 16, 18, 19, 22, 23, 24]. Some-
times it is possible to give a visual representation of
the continuum of possible solutions. Such an approach
for a three-component system has recently been pre-
sented by Golshan, Abdollahi and Maeder [7], see also
[2, 3, 20, 25]. The decisive question is to determine the
chemically relevant solution within the range of feasi-
ble (mathematically admissible) solutions. Usually, a
multivariate curve resolution technique does not com-
pute the range of these admissible solutions. Instead
regularization techniquesin the form of so-calledsoft
constraintsare used to steer the factorization algorithm.
In this way one desires to construct the chemically rel-
evant and correct factorization. Such a regularization is
also part of the factorization tool PCD (Pure Component
Decomposition) which is explained next.

2.2. Factorization tool PCD

Typically the spectral data matrixD includes mea-
surement errors. Further, the Lambert-Beer law (1) is an
idealization which neglects any non-linearities. There-
fore we aim at anapproximate reconstruction CAof
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D in a way thatD − CA is close to the zero matrix.
There are other useful restrictions on the matrix fac-
torsC andA which are different from the non-negativity
conditions. To meet all these conditions we reformulate
Problem 1 as a minimization problem for the function

F : Rk×s × Rs×n→ R,

F(C,A) = ‖D −CA‖2F +
p

∑

i=1

γi fi(C,A). (2)

Therein‖ · ‖F denotes the Frobenius matrix norm, which
is the square root of the sum of squares of all matrix el-
ements [8]. Further,p is the number of penalty and reg-
ularization functionsfi which are weighted by positive
constantsγi whose numerical values are given below.
These penalty functions are used to enforce to a large
extent the hard constraints on the solution. Further reg-
ularization functions with typically smaller weighting
constantsγi compared to the penalty functions can be
used to give advantage to solutions which respect the
soft constraints. For details on those functionsfi which
are used in the PCD code see [23].

Typically a first step to solve the minimization prob-
lem is to compute a singular value decomposition
(SVD) [8] of the data matrixD ∈ Rk×n. The SVD reads

D = UΣVT

with orthogonal matricesU ∈ Rk×k andV ∈ Rn×n. Fur-
ther,Σ ∈ Rk×n is a diagonal rectangular matrix with

Σi, j =

{

σi , for i = j,
0, else.

The numbersσ1 ≥ σ2 ≥ · · · ≥ 0 are the singular values.
A low-rank approximationD̃ of D is accessible from
the SVD if all singular values which are smaller than a
proper threshold are ignored. We obtainD̃ = ŨΣ̃Ṽ with
the sub-matrices̃U = U(:, 1 : s) andṼ = V(:, 1 : s),
which are formed from thes first columns ofU andV,
and thes× s submatrixΣ̃ = Σ(1 : s, 1 : s) of Σ. This
low-rank approximation still contains the characteristic
information on the chemical system and opens an algo-
rithmic way to solve the optimization problem for the
functionF.

This approach, which has already been used by Law-
ton and Sylvestre [16], allows us to approximateF, see
(2), in the form

G : Rs×s
→ R, G(T) = F(ŨΣ̃T−1,TṼ

T
). (3)

Therein a matrixT ∈ Rs×s and its inverseT−1 are used.
These matrices are the key to represent and to treat the

so-called rotational ambiguity of the solution. The next
step is a minimization ofG with respect to the matrix
elements ofT. For a proper treatment of perturbed data
it may appear advisably to work with a matrixT ∈ Rs×z

with z≥ s; then one has to substituteT−1 by its pseudo-
inverseT+ [8]. The use of (T,T+) admits to get access
to additional singular vectors for a proper reconstruc-
tion of C andA. The choice of the regularization func-
tions and their weights factorsγi is important. Negative
entries inC or A are penalized byf1 and f2. For the
problems in Sections 4 and 5 we useγ1 = γ2 = 100.
Hard constraints penalizing negative entries inC or A
are much stronger weighted than soft constraints like
the smoothness of the concentration profiles and/or lo-
calized, uncorrelated spectra; see also [18, 19, 23].

3. Kinetic modeling

A successful pure component decomposition can be
used to extract additional information on the chemical
system from the concentration profiles since these func-
tions encode useful information on the kinetics of the
chemical reaction. In a subsequent step the kinetic con-
stants of a given kinetic model can be fitted to the con-
centration profiles. However, the non-uniqueness or ro-
tational ambiguity of the factorization may result in a
multitude of concentration profiles which usually do not
allow an accurate fitting to a pre-given kinetic model.
Therefore one can try to combine themodel-freefactor-
ization approach with amodel-basedchemical kinetic in
order to steer the optimization procedure within the set
of feasible factorizations to just those solutions which
are consistent with the kinetic model [9, 14]. Mathe-
matically this can be realized by adding the squared er-
ror of a model fitting as a further regularization term to
the functionF given in (2).

Typically the kinetics of a chemical reaction can be
modeled by a system of ordinary differential equations
in the form

d
dt

c(t) = g(t, c(t),K). (4)

The vector-valued functionc(t) represents the concen-
trations of the chemical species at a timet. If a vector
c(t1) of initial concentrations at a timet1 is given, then
(4) defines an initial value problem. Equation (4) is as-
sumed to hold for allt in an interval [t1, tend]. The right
hand side of (4) is formed by the rate equations of the
chemical reaction. The functiong also depends on the
vectorK of the kinetic constants. The problem of a ki-
netic modeling is to determine just this vectorK. How
this can be done is explained next.
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3.1. A-posteriori kinetic modeling

The “traditional” approach to a kinetic modeling
which can be considered as ana-posteriori modeling
includes two steps. In a first step the concentration pro-
files C are computed by a pure component decomposi-
tion. As mentioned above any decompositionD = CA
includes a scaling-ambiguity in the sense that a diag-
onal matrix∆ with positive diagonal elements can be
introduced so thatD = (C∆−1)(∆A). Because of this
scaling-ambiguity it appears to be possible and conve-
nient to normalize all the absorption spectra, that are the
rows ofA, in a way that their maximum equals 1. Such
a normalization implicitly determines the scaling of the
columns ofC. Here we use a different normalization,
namely, we scale the columns ofC in a way that the
concentration profiles are consistent with experimental
data like initial concentration and mass balances, see
Sections 4 and 5. The matrixC with properly scaled
columns is denoted byC(S).

In a second step these scaled concentration profiles
can be used to compute the kinetic constantsK in a
way that the solution of (4) is a proper fitting to the
concentration profilesC(S). SinceC(S) is a k × s ma-
trix we evaluate the solutionc(t) of (4) on the time grid
t1 < t2 < · · · < tk = tend. Theseti are just the points
in time which have been used to form the data matrix
D. If C(S)

i, j are the components of the matrixC(S) and

C(ode)(K) ∈ R
k×s is the solution of (4) evaluated on the

grid (t1, . . . , tk), then

fkin : Rq→ R,

fkin(K) =
k

∑

i=1

s
∑

j=1

(C(S)
i, j −C(ode)

i, j (K))2 (5)

is the squared modeling error for a given vectorK ∈ Rq

of kinetic constants. We denote byK∗ the vector of opti-
mal kinetic constants which minimizesfkin so thatC(S)

andC(ode)(K∗) have the smallest distance (component-
wise sum of squares). The vectorK∗ can be computed
by a proper numerical minimization procedure.

3.2. Model-based regularization

The a-posteriori kinetic modeling has some disadvan-
tages. Whenever a continuum of admissible factoriza-
tions exists, then a curve resolution technique will often
provide a concentration factorC which might not allow
a very accurate kinetic fitting with the kinetic model. As
explained above it appears to be preferable to apply the
error functional (5) as a further penalty function to (3).

Then the minimization offkin is a part of the minimiza-
tion of the functionG. By combining (2), (3) and (5) we
obtain

G̃(T,K) = F(ŨΣ̃T−1,TṼ
T
) + γkin fkin(K). (6)

If G̃ attains a minimum in (T∗,K∗), then the pro-
cess of a kinetic-model-based curve resolution results
in C = ŨΣ̃(T∗)−1, A = T∗Ṽ

T
and a kinetic model (4)

with kinetic constantsK∗. In other words we use the
process of kinetic modeling as a further regularization.
The usage offkin for a regularization appears to be the
natural approach; we minimizẽG in T andK simultane-
ously. For the minimization we use the NL2SOL code
[5] which is based on quasi-Newton and Gauss-Newton
algorithms. Alternatively, but we do not use such a strat-
egy, one might minimizẽG(T,K) in an alternating itera-
tion; then separate minimization steps inT and inK are
repeated until convergence inT and inK is achieved.

For the approximate solution of the ordinary differen-
tial equation (4) numerical solvers are to be applied. For
non-stiff problems we use a high-order explicit Runge-
Kutta solver like the Dormand-Prince method with step
size control [11]. For stiff problems implicit Runge-
Kutta procedures are to be used like the Radau methods
[10]. In our PCD code we use Radau IIA methods with
the variable orders 5, 9 and 13 together with step-size
control1.

4. A two-component model problem

In order to show that a regularization by means of a
kinetic model is a successful strategy we start with an
analysis of a two-component model problem. For this
problem the continuum of possible solutions is acces-
sible; we show that the hybrid approach using (6) can
reduce the ambiguity.

We assume a first order kineticsX
K
−→ Y. The associ-

ated concentration profiles for the componentsX andY
are taken as

cX(t) = exp(−Kt), cY(t) = 1− exp(−Kt) (7)

with a kinetic constantK > 0. The absorption spectra

1The RADAU software in FORTRAN is available from
http://www.unige.ch/∼hairer/software.html
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Figure 1: Concentration profiles (left) and absorption spectra (center) of the model problem. Total absorption of the mixture (right).

of the two componentsX andY are set to be

aX(λ) = 2 exp(−
(λ − 50)2

30000
) + 1.3 exp(−

(λ − 200)2

1000
),

aY(λ) = exp(−
(λ − 150)2

100
) +

1
5

exp(−
(λ − 170)2

30000
)

+ 2 exp(−
(λ − 200)2

100
) + exp(−

(λ − 250)2

100
).

According to Lambert-Beer’s law the absorption spec-
trum of the mixture at a timet and wave-lengthλ is

d(t, λ) = cX(t)aX(λ) + cY(t)aY(λ).

The functionsc(t), a(λ) andd(t, λ) with K = 0.01 are
shown in Fig. 1.

An equidistant grid ont ∈ [0, 200] andλ ∈ [0, 500]
with k = 201 andn = 501 is used to construct the data
matrix D of absorption values. Thus the matrixD ∈
R

201×501
+ reads

Di, j = d(ti , λ j), i = 1, . . . , 201, j = 1, . . . , 501. (8)

The data matrixD has the rank 2. Therefore the
wanted matrix factors areC ∈ R

201×2
+ andA ∈ R

2×501
+ .

Further, we assume the initial concentrations to be given
ascX(0) = 1 andcY(0) = 0, i.e. the first row ofC is the
row vectorC(1, :) = (cX(0), cY(0)) = (1, 0).

Next the mathematical problem is summarized.
Given: – D ∈ R201×501

+ .
– Number of componentss = 2 = rank(D)

(by construction).
– Initial concentrationscX(0) = 1, cY(0) = 0.

Aim: – A non-negative decompositionD = CA.
– The kinetic parameterK.

4.1. Continuum of admissible factorizations

Next we present an analytic representation of the
range of feasible non-negative factorizations of the data

matrix (8). The starting point is a singular value decom-
positionUΣVT of D. As rank(D) = 2 only those left and
right singular vectors are needed which correspond to
non-zero singular values. Therefore letŨ = U(:, 1 : 2),
Σ̃ = Σ(1 : 2, 1 : 2) andṼ = V(:, 1 : 2) so thatD = ŨΣ̃Ṽ

T

if numerical rounding errors are ignored. This factor-
ization ofD allows to represent the range of admissible
non-negative matrix factorizations. By inserting a reg-
ular transformation matrixT ∈ R2×2 and its inverse we
obtain

C = ŨΣ̃T−1, A = TṼ
T
.

Only those regularT are considered which result in non-
negative matricesC andA.

The assumptioncX(0) = 1 determines the unknown
calibration constant of the first column ofC; the un-
known scaling constant of the second column ofC can
be determined in the least-squares sense from the con-
straint thatcX(t) + cY(t) = cX(0) = 1 for all t. Hav-
ing fixed the row ofC as (1, 0) the wanted pure com-
ponent spectrum ofX is just the first rowD(1, :) of D,
i.e.A(1, :) = D(1, :) since att = 0 only the componentX
is present. Therefore the first row of the transformation
matrixT is determined; the real constantsα andβ in

T(x) =

(

α β

1 x

)

can be computed fromA(1, :) = D(1, :) = T(1, :)Ṽ
T
. As

the second spectrumA(2, :) can be scaled in any (non-
zero) way, the second row ofT can be set to (1, x); Gol-
shan, Abdollahi and Maeder use the same approach in
Eq. (7) of [7]. Thusx ∈ R is the only remaining degree
of freedom.

We note that the use of (1, x), instead of working
with (−1, x), is justified by the Perron-Frobenius the-
orem [21]. This theorem allows to assume that the first
singular vectorsU(:, 1) andV(:, 1) which correspond to
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the largest singular value of the non-negative data ma-
trix D are non-negative. Hence, mini Vi,1 ≥ 0. Further,
the orthogonality ofV(:, 1) andV(:, 2) guarantees that
mini Vi,2 < 0 < maxi V:,2. Therefore a positive contri-
bution from V(:, 1) is required in order to construct a
non-negative matrixA. See also [16] for the use of the
Perron-Frobenius theorem.

This results in a one-parameter representation of the
absorption and concentration matrices which reads

A[x] =

(

α β

1 x

)

Ṽ
T
,

C[x] = ŨΣ̃
1

αx− β

(

x −β

−1 α

)

.

To guarantee non-negativeness of the elements in the
second rowA(2, :)[x] the parameterx has to satisfy

max
i=1,...,n,
Ṽi,2>0

−
Ṽi,1

Ṽi,2
≤ x ≤ min

i=1,...,n,
Ṽi,2<0

−
Ṽi,1

Ṽi,2
. (9)

The non-negativeness of the elements ofC(x) results in
the following restrictions

x >
β

α
andx ≥ max

i

σ2Ũi,2

σ1Ũi,1
if ŨΣ̃(−β, α)T ≥ 0, (10)

x <
β

α
andx ≤ min

i

σ2Ũi,2

σ1Ũi,1
if ŨΣ̃(−β, α)T

≤ 0. (11)

All these restrictions cannot reduce the range of ad-
missible solutions to a single, unique solution. Instead
for the whole rangex ∈ [0.4286, 0.9405] non-negative
solutions exist. The possible solutionsC(:, 1)[x] and
A(2, :)[x] are shown in Fig. 2.

4.2. Regularization with a kinetic model

Next we follow the strategy of a model-based regular-
ization as explained in Sec. 3.2. The kinetic model (7) is
taken as a part of the penalty function, see Eqns. (5) and
(6). This defines in a non-linear least-squares problem
for the two parametersx andK. A numerical computa-
tion for the given test problem shows that these param-
eters are confined as follows

(x,K) ∈ [0.4286, 0.9405]× (0,∞).

For eachx ∈ [0.4286, 0.9405] we obtain an admissible
solution of the factorization problem - however for most
of the x this solution does not reproduce the original
spectra and concentration profiles.

In order to reconstruct the correct solution we use an
error functional measuring the error between a matrix
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Figure 2: Continua of solutions forc1 = C(:, 1)[x] anda2 = A(2, :)[x].

factorC ∈ R201×2 and the solutionC(ode) of (4). For the
model problem the solution of (4) is explicitly given in
(7) so thatfkin reads

fkin : R2→ R, (x,K) 7→
400
∑

i=1

(gi(x,K))2. (12)

This function is to be minimized. Therein thegi are

gi(x,K) = Ci,1[x] −C(ode)
i,1 (K), i = 1, . . . , 200,

gi+200(x,K) = Ci,2[x] −C(ode)
i,2 (K), i = 1, . . . , 200.

Note that the concentration profileC(:, 2) also depends
on x since the transformationT couples the scaling of
C(:, 2) to that ofC(:, 1)[x].

Fig. 3 shows the regularization functionalfkin for
K ∈ (0, 0.025]. To illustrate that arbitraryx ∈

[0.4286, 0.9405] can result in concentration profiles
which are not consistent with the kinetic model we take
arbitrarily x = 0.5 and compute the optimal kinetic fit-
ting which results inK = 0.012382. For this solution
the hard constraints, namely the non-negativity ofC and
A, are satisfied; the error on these parts of the penalty
functions is less that 10−10. However, the concentra-
tion profiles are only poor approximations of (7) where
K = 0.01. The kinetic-model-errorfkin(K), as given
by (5), is about 0.2, see Fig. 3. Next we show that the
kinetic regularization is the key for a correct reconstruc-
tion of C andA.

Figure 3 shows that a kinetic-model-error close to 0
can be achieved. And in fact, the hybrid algorithm us-
ing the kinetic regularization (12) can provide the cor-
rect solution. The numerical computation yieldsx∗ =
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0.77753 together withK∗ = 0.0099973 which is a very
good approximation of the desired solution, see Fig. 3.

For the artificial two-component model problem
the model-based regularization has proved as a well-
working tool to steer the curve resolution method to the
correct solution.

5. Rhodium-catalyzed hydroformylation

The rhodium catalyzed hydroformylation of 3,3-
dimethyl-1-butene, forming 4,4- dimethylpentanal and
2,3,3-trimethylbutanal in a constant 9:1 ratio, has been
studied over the full conversion range. The reac-
tion was performed in n-hexane solvent at 30◦C, with
p(CO) = 1 MPa and p(H2) = 2 MPa. The cata-
lyst, a hydrido rhodium carbonyl phosphite complex,
was formed from [(acac)Rh(CO)2] and tri(2,4-di-tert.-
butylphenyl)phosphite prior to the catalytic reaction.
The individual rhodium, phosphite and olefin concen-
tration applied were 3·10−4, 6·10−3 and 0.9 mol dm−3,
respectively. Catalyst preformation, the progress of
the organic reaction as well as catalytic intermediates
have been monitored by in situ FTIR-spectroscopy. For
that purpose, the reaction solution was circulated be-
tween the batch reactor and a pressure tight transmis-
sion cell with the windows material ZnS placed inside a
Bruker Tensor 27 FTIR spectrometer. The background
spectrum used for correction consisted of the solvent
n-hexane and dodecane, with the latter serving as an
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Figure 4: Upper left: Complete series of spectra after background sub-
traction; Further plots: Characteristic bands after zero-line correction.

internal standard for GC. The independent concentra-
tion profiles of the product aldehydes obtained from GC
analysis were found to fit well to the data derived from
FTIR spectroscopy. To get access to the concentration
profiles of the catalytically relevant rhodium complexes,
appropriate spectral data were selected and treated by
the PCD algorithm.

For this problem the data matrix is built from
1045 spectra, each with 13482 spectral channels.
The curve resolution algorithm makes use only from
three decisive spectral bands namely [1580, 1601]cm−1,
[1960, 2120]cm−1 and [3400, 3490]cm−1. Further, the
background spectrum, i.e., the spectrum of the solvent
and n-hexane, is subtracted and the zero-line is cor-
rected. This results in a reduced matrixD ∈ R1045×1170.
The complete series of spectra after zero-line correction
as well as the three isolated spectral bands are shown in
Fig. 4.

The singular value decomposition ofD provides valu-
able information on the number of independent species.
The first eight left and eight right singular vectors and
also the twenty largest singular values are shown in
Fig. 5. There are four smooth or non-oscillatory left sin-
gular vectors and at least four singular values which are
clearly separated from the remaining set of smaller sin-
gular values. The noise pattern of the left singular vec-
tors with the indexes 5, . . . , 8 does no appear for the cor-
responding right singular but occurs for larger indexes.
Our explanation is that this caused by the background
subtraction and the zero-line correction, which each op-
erate along the frequency axis.

The system contains at least four independent reac-
tants which determines the dimensions of the matrix
factorsC ∈ R

1045×4
+ and A ∈ R

4×1170
+ . The curve res-
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olution technique should compute these factors so that
D ≈ CA. Further, we assume a Michaelis-Menten ki-
netics [15]. The vector of kinetic constantsK is to be
computed in a way that the solution of the ordinary dif-
ferential equation fits the concentration profilesC from
the pure component decomposition in the least-squares
sense.

In Sec. 5.1 a non-negative matrix factorization ofD
is used to computeC andA without any kinetic model-
ing. The resulting mathematically admissible factoriza-
tion is not consistent with the Michaelis-Menten kinet-
ics. Themodel-based regularizationin Sec. 5.2 is the
key to compute proper pure component spectra together
with concentration profiles which are compatible with
the Michaelis-Menten kinetics.

5.1. Results of an SMCR analysis

A first approach to solve the chemometric problem
for the Rhodium-catalyzed hydroformylation is to com-
pute a non-negative matrix factorization as defined by
Problem 1 in Sec. 2.1. For the moment we ignore any
kinetic modeling. However, two soft-constraints are
used. First a norm of the discrete second derivative
of the concentration profiles is used as a penalty func-
tion in order to give an advantage to smooth concentra-
tion profiles. Further, the discrete integral of the spec-
tra is taken for a regularization in order to favor local-
ized peaks in the spectrum. This soft-constrained non-
negative matrix factorization can, e.g., be computed by
the PCD algorithm [23]. The weighting factor for the
discrete-integral-regularization isγ = 1 · 10−4 whereas
the weighting factors for the penalization of negative en-
tries inC andA are equal to 100.

As explained in Sec. 2.2, see also [23], the truncated
singular value decomposition is used to reconstruct the
matrix factors by using six left and right singular vec-
tors, i.e.,s = 4 andz = 6. The results are shown in
Fig. 6. Therein the absorption spectra are normalized
in a way that the maximum is set to 1. This implicitly
determines the associated scaling of the concentration
profiles.

5.1.1. Non-uniqueness - a continuum of decompositions

It is easy to see that there is a continuum of non-
negative solutions. One of these solutions is shown
in Fig. 6. To the end of an illustration of a subset of
this continuum we construct a one-dimensional range of
these admissible solutions. This range is parameterized
next by a single parameterα. For the explicit construc-
tion we apply the following transformation to the matrix

200 400 600 800 1000
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0.15

0.2

0.25

time [min]

Concentration profiles

Absorption spectra

Figure 6: An admissible non-negative decomposition with a small re-
construction error, smooth concentration profiles and localized peaks
so that the integral of the absorption spectra is small.

factors

C′ = CTα, A′ = T−1
α A.

ThereinTα is taken as a 4-by-4 matrix

Tα = I4 − αe4eT
3 =





























1 0 0 0
0 1 0 0
0 0 1 0
0 0 −α 1





























, (13)

whereI4 is the 4× 4 identity matrix andek is its k-th
column. If α ∈ [0, 0.3127], thenC′ and A′ are still
non-negative matrices, which is easy to see by check-
ing the associated linear combinations of the columns
C(:, 3) andC(:, 4) of C. Further,T−1

α is a non-negative
matrix so thatA′ = T−1

α A is also non-negative.

There are many further transformations which pre-
serve the non-negativity of the matrix factors likeTβ =
I4 − βe3eT

1 with β ∈ [0, 0.4096] orTδ = I4 − δe4eT
1 with

δ ∈ [0, 0.16]. Various other combinations or products of
these factors may also work. Fig. 7 illustrates the ambi-
guity of the solution due to the transformation (13).

The so-called rotational ambiguity of the solution de-
pends to some extent on the dimensions. In case of
multi-component systems withs≥ 2 the knowledge of a
specific concentration profile does not determine the as-
sociated absorption spectrum and vice versa. However,
there are some special cases in which more information
is available; see [26, 27].

8



0 200 400 600 800 1000
time [min]

First 8 left singular vectors

0 5 10 15 20
10

−2

10
−1

10
0

10
1

10
2

i
σ

i

First 20 singular values
First 8 right singular vectors

Figure 5: Singular value decomposition ofD. Left: Eight left singular vectors corresponding to the largest singular values. Center: Plot of the
largest twenty singular values in a semi-logarithmic plot.Right: Eight right singular vectors corresponding to the largest singular values.

Concentration profilesC(:, 3)

Absorption spectraA(4, :)

Figure 7: Continuum of admissible non-negative solutionsC(:, 3) and
A(4, :) due to the transformation (13) applied to Fig. 6.

5.1.2. Non-uniqueness - the subsystem of catalysts
The intention of this section is to show that even

the subsystem of catalysts contains some inherent ro-
tational ambiguity. The spectra of this subsystem have
been gained by a subtraction of the reactant and prod-
uct spectra from the original spectral data. Next we try
to present this ambiguity in detail which is a somewhat
technical procedure. Later in Section 5.2 the full four-
component problem is treated once again. Then the ki-
netic regularization technique proves its benefits as ev-
erything becomes very simple and the ambiguity disap-
pears.

In order to separate the catalytic subsystem we first
state that the absorption spectra are known for the re-
actant, namely the alkene, and the product being the
aldehyde. By using some isolated peaks of the alkene
and aldehyde we also obtain their concentration profiles

along the time axis. This allows us to subtract the con-
tributions of the reactant and product from the spectral
data.

For the resulting catalytic subsystem which contains
the acyl- and the hydrido-complex a full uniqueness of
the decomposition cannot be attained. There are two
further ways to reduce the rotational ambiguity of the
system. First, we can exploit the fact that the concen-
tration of a specific component is zero at the end of the
reaction. Second, the rotational ambiguity can be re-
duced if the series of spectra contains a specific spectral
band in which only one component is absorbent while
all other components show a small absorptivity.

For our catalytic system the acyl complex disappears
at the end of the reaction and further an isolated peak in
the acyl-complex spectrum is located around 1996cm−1

where the absorption of the hydrido complex is close to
zero. All this allows to reduce the ambiguity to a one-
parametric continuum of admissible solutions. We ob-
serve that the concentration profile of the acyl-complex
and the absorption spectrum of the hydrido complex ap-
pear to be unique apart from small spectral perturba-
tions. However, the complementary concentration pro-
file of the hydrido-complexand the absorption spectrum
of the acyl-complex show aone-parametric continuum
of admissible solutions. All these factors are shown in
Fig. 8.

Such an ambiguity makes ana-posteriorikinetic fit-
ting difficult. However, a model-based regularization
appears to be a promising alternative to compute a
useful factorization and reliable kinetic constants as is
shown in the next section.
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5.2. Regularization be means of a kinetic model

To approximate the catalytic process we assume a
Michaelis-Menten model

A+ B
K1

GGGGGGBF GGGGGG

K−1

C
K2

GGGA D + B.

The olefin A forms with the catalyst B the catalyst-
substrate adduct C. Then C decays into the aldehyde
D and catalyst B. The kinetic constants areK =

(K1,K−1,K2). For a kinetic analysis of the hydroformy-
lation process via in-situ HP-IR and HP-NMR spec-
troscopy see [15] and the references therein.

The concentration functions are the components of
the vector

c(t) =





























cA(t)
cB(t)
cC(t)
cD(t)





























and the system of ordinary differential equations reads

d
dt

c(t) =





























−K1 cA cB + K−1 cC

−K1 cA cB + K−1 cC + K2 cC

K1 cA cB − K−1 cC − K2 cC

K2 cC





























. (14)

As explained in Sec. 4.2 the error of the kinetic mod-
eling is used as a regularization function.

The problem is to minimize the functioñG(T,K) as
given by (6). The result of the minimization are the op-
timal kinetic constantsK∗ together with the transforma-
tion matrix T - the latter matrix determines the matrix
factorsC andA.

Within the optimization procedure a proper scaling of
the concentration profiles, namely the columns ofC, has
to be determined in order to evaluate the kinetic-error-
functional (15). This is done as follows: For the hydro-
formylation the mass balance of the organic species, that
are the olefin and the aldehyde, says thatC(:, 1)+C(:, 4)
equals component-wise 0.8951. Further, the mass bal-
ance of the Rhodium-containing species says thatC(:
, 2) + C(:, 3) equals in each component 2.9330· 10−4.
These two equations allow to compute the four scal-
ing constants of the four concentration profilesC(:, i),
i = 1, . . . , 4, in such a way that the properly scaled con-
centration profiles fulfill the mass balance equations in
the least-squares sense in the best way. We denote the
resulting scaled concentration matrix byC(S) ∈ Rk×4.

For the numerical minimization of (6) an implicit
Runge-Kutta method Radau IIA with the variable orders
(5, 9, 13) has been used. The initial concentrations are
c(0) = (0.8951, 2.9330·10−4, 0, 0)T. This computation
works with C(ode) ∈ R

k×4 and with the regularization
function

fkin(C,K) =
4

∑

j=1

‖C(S)(:, j)‖−1
∞

k
∑

i=2

(C(S)
i, j −C(ode)

i, j )2. (15)

For fkin(C,K) we usedγkin = 100 as the weighting fac-
tor in G̃(T,K). The factors‖C(S)(:, j)‖−1

∞ in (15) are in-
troduced to supply each of the concentration profiles
with the same weighting factor;‖ · ‖∞ denotes the max-
imum norm of a vector [8].

5.3. The numerical results
The final numerical results of the pure component

decomposition with embedded kinetic regularization is
shown in the Figs. 9 and 10. The absorption spectra
can clearly be interpreted; for the details see [15]. In
[15] the peaks of the acyl-complex at 2072cm−1 and at
2079cm−1 are somewhat better separated. Further, the
lowly concentrated catalytic species do not have an ab-
sorption peak at 1590cm−1. This is just an artifact from
the olefin.

The optimization procedure yields the kinetic con-
stants

K∗ = (K∗1,K
∗
−1,K

∗
2)T

= (45.228 l min−1mol−1, 0.3431 min−1,

9.3145 min−1)T .
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The solution of the Michaelis-Menten system of ordi-
nary differential equations (14) with these constants ac-
curately fits the results of the pure component decom-
position, see Fig. 10. The final errors for the four com-
ponents (A, B,C,D) = (1, 2, 3, 4) are

εi =
‖C(S)(:, i) −C(ode)(:, i)‖2

‖C(S)(:, i)‖2
, i = 1, . . . , 4,

ε = (6.15·10−3, 9.12·10−3, 7.16·10−3, 7.67·10−3).

Therein the Euclidean norm‖ · ‖2 is the square root of
the sum of the squares of the components of the error.

We note that the computation of the kinetic equilib-
rium constantsK∗1 andK∗

−1 is poorly conditioned. If we
consider only the dependence of the regularizing func-
tion fkin on the kinetic constantsK∗1, K∗

−1 and K∗2 we
obtain for its gradient

∇ fkin(K∗)T =





















2.9350·10−6,

4.1869·10−6,

−3.6041·10−6





















.

So the first order corrections in a Taylor expansion
are small. The second-order correction are determined
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Figure 10: Nearly perfect kinetic fitting of the solution of the
Michaelis-Menten equation (14) with the optimal kinetic constantsK∗

(solid lines) and of the concentration profiles from the purecomponent
decomposition with model-based regularization (dotted lines).

by the Hessian∇2 fkin(K∗). Its eigenvalues areλ1 =

2.195·10−4, λ2 = 1.2513 andλ3 = 11.071. The sec-
ond order term (v,∇2 fkin(K∗)v) of the Taylor expan-
sion is more or less insensitive with respect to varia-
tions in the direction of the eigenvectorv1 = (9.7798·
10−1, 2.0870·10−1,−4.1761·10−5)T corresponding to the
smallest eigenvalueλ1. Further,v1 has significant com-
ponents in the first and second components which are
associated withK1 and K−1. Therefore the numerical
computation of these kinetic constants appears to be
somewhat instable.

We further note that in Fig. 9 the formation of the
acyl-complex is not represented. The formation of this
complex is a fast reaction which proceeds in about the
first 6 seconds. However, it is possible to deduce the
behavior of the reaction system within the first minute
without spectral data by extrapolation [15].

6. Conclusion

Model-free multivariate curve resolution techniques
suffer from the rotational ambiguity of the solution.
This non-uniqueness considerably increases with the
number of chemical components. Therefore a consid-
erable proportion of the computed factors of a multi-
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component system do not allow a useful chemical inter-
pretation. However, multi-component chemical systems
like catalytic reaction systems and their detailed mech-
anistic understanding are of major importance.

Any additional constraints or restrictions on the solu-
tion can help to reduce the non-uniqueness. A very use-
ful supplemental information is that on an underlying
kinetic model and even an incomplete kinetic model can
be used. If the consistency in the sense of a small fitting
error of a kinetic model with the concentration profiles
is used to regularize the reconstruction functional, then
this ambiguity can drastically be reduced. The resulting
numerical algorithm merges the model-free curve res-
olution technique with the model-based kinetics within
an overall optimization process. In the best case reli-
able and unique multi-component factorizations can be
computed.
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