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Abstract

Modern computerized spectroscopic instrumentation typically results in high volumes of spectroscopic data. Such
accurate measurements rise computational challenges for multivariate curve resolution techniques since high-
dimensional constrained minimization problems are to be solved. The computational costs for these calculations
rapidly grow with an increased time or frequency resolutionof the spectral measurements.

The key idea of this paper is to solve the curve resolution problem for high-dimensional spectroscopic data by means
of a sequence of lower-dimensional subproblems with reduced resolutions. The suggested multiresolution approach
works as follows: First the curve resolution problem is solved for the coarsest problem with lowest resolution. The
computed coarse level solution is then used as an initial guess for the next problem with a finer resolution. Good
initial values allow a fast solution of this refined problem.This procedure is repeated. Finally, the multivariate
curve resolution problem is solved for the initial data withhighest dimension. The multiresolution approach yields a
considerable convergence acceleration. The new computational procedure is analyzed and tested not only for model
data, but also for experimental spectroscopic data from therhodium-catalyzed hydroformylation.

Key words: chemometrics, factor analysis, pure component decomposition, non-negative matrix factorization,
multiresolution methods.

1. Introduction

The Lambert-Beer law determines the absorption
d(t, ν) for an s-component system with time-dependent
concentration profilesci(t), i = 1, . . . , s, and frequency-
dependent pure component spectraai(ν) in the form

d(t, ν) =
s∑

i=1

ci(t)ai(ν) + e. (1)

with small error termse. The continuous-time-
frequency model is approximated in practical spectro-
scopic measurements if spectroscopic data is recorded
on a discrete time-frequency grid. Fork separate spec-
tra which include a number ofn spectral channels the
measurements can be recorded in ak-times-n matrix D.

Multivariate curve resolution methods aim at a fac-
torization of thisk× n matrixD in a nonnegative matrix
C ∈ R

k×s of concentration profiles and a nonnegative
matrix A ∈ Rs×n of pure component spectra. If a coarse
time-frequency grid is selected, i.e. the numberkn is
small, then the computational costs for the determina-
tion of a feasible factorizationCA are relatively small.

But the resulting small matrices constitute only a poor
approximation of the continuous model. In contrast to
this, a high time-frequency resolution with potentially
oversampled data can yield accurate results at the cost
of time-consuming computations. Typically the number
k of spectra and the numbern of channels are deter-
mined by the experimental setup and the spectrometer.
The key point of this paper is to develop a computational
strategy which uses a sequence of submatrices

D(1),D(2), . . . ,D(L)

of the spectral data matrixD ∈ Rk×n in order to acceler-
ate the pure component factorization. These submatri-
cesD(i) are representations of the initial matrixD = D(0)

with lower resolutions. The nonnegative factorization
problem is solved in a way that first the matrixD(L) with
the lowest resolution, which is the smallest submatrix,
is factored. Then the factorization with respect to the
current grid is used as the starting point for the iterative
factorization procedure on the next finer time-frequency
grid. The resulting iterative procedure is much faster
compared to a direct computation of the factorization of



the initial high-dimensional matrixD = D(0).
Such a successive approximation of the solution of

a general optimization problem (not necessarily related
to chemometrics) with respect to the finest grid by
means of a sequence of relaxed subproblems, which
are cheaper or easier to solve, is a well-known iterative
technique for high-dimensional problems. For some
classes of problems the sequence of coarsened grids
can be used in order to construct very effective solvers
for the problem. This is especially the case for the fa-
mous multigrid or multilevel methods for the solution
of boundary value and eigenvalue problems for elliptic
partial differential operators by means of a finite ele-
ment method [10]. For these problems one has to solve a
minimization problem for the elliptic energy functional
or for the Rayleigh quotient [4].

The present chemometric matrix factorization prob-
lem, which is essentially a multicomponent decomposi-
tion, can also be formulated as a minimization problem.
For high-dimensional data the solution of such mini-
mization problems can be extremely time-consuming.
A severe obstacle to a fast numerical solution of the non-
negative matrix factorization is the non-uniqueness of
its solutions. This fact is paraphrased by therotational
ambiguityof the solution [1, 2, 18, 25]. A possible ap-
proach to single out specific important solutions from
the continuum of feasible nonnegative solutions is the
usage of hard or soft models [5, 12, 17]. Finally, a con-
strained minimization problem is to be solved and the
computational costs for the minimization of the target
function depend on the dimension ofD and on the the
number of necessary iterations. The number of itera-
tions decreases if the quality of the initial approximation
increases.

1.1. Central idea

The aim of this paper is to introduce a multiresolution
method for the convergence acceleration of a multivari-
ate curve resolution method. The key idea is to utilize
a sequence of coarsened factorization problems in order
to compute an associated sequence of gradually refined
approximations of the solution. The coarsest problem
can be solved with relatively low computational costs
and provides good starting values for the factorization
problem for the next refined resolution level. These
two steps of a correction of the solution with respect
to a given resolution level together with the subsequent
refinement form a “correction-refinement cycle”. This
cycle is applied on the sequence of refined grids until
a nonnegative matrix factorization of the initial spectral
data matrixD is computed, see Figure 1.

1.2. Organization of the paper

The paper is organized as follows: In Section 2 a
short introduction to multivariate curve resolution tech-
niques is given which includes the principles of soft-
and hard-modeling. The central multiresolution ap-
proach is introduced in Section 3. Its application to
model data and to experimental data from the rhodium-
catalyzed hydroformylation process is presented in Sec-
tion 4. Different strategies for the refinement steps are
analyzed.

2. Multivariate curve resolution methods

Multivariate curve resolution methods are powerful
tools to extract pure component information from spec-
troscopic data of chemical mixtures. The spectroscopic
measurements are recorded in ak× n absorption matrix
D with k points in time of measurement along the time
axis andn spectral channels along the frequency axis.
Whereas the continuous form of the Lambert-Beer law
is given in (1) its discrete matrix form reads

D ≈ CA+ E.

The small error termE collects all measurement errors
and nonlinearities. The matrixC ∈ R

k×s of concen-
tration profiles and the matrixA ∈ R

s×n of the spectra
contain columnwise or rowwise the information on thes
pure components. The factorsC andA and the spectral
data matrixD are componentwise nonnegative matrices.
The mathematical problem is to compute a chemically
meaningful nonnegative matrix factorizationCA from a
givenD. The most common way to compute this factor-
ization is to start with a singular value decomposition
(SVD) of D with the formD = UΣVT , [8]. If D has
the ranks, then the matrix can also be represented by a
truncated SVD. This truncated SVD uses only the firsts
columns ofU andV. ThenΣ is ans× sdiagonal matrix
containing thes largest singular values on its diagonal.
With these matrices the desired factorsC andA can be
constructed with a regular matrixT ∈ Rs×s as follows

C = C[T] = UΣT−1, A = A[T] = TVT , (2)

see e.g. [16, 15]. Sometimes we writeC[T] and A[T]
in order to express the functional dependence ofC and
A on T. If the spectral data includes noise, then one
can alternatively use a number ofz > s left- and right
singular vectors. In this caseT is an (s× z)-matrix and
T−1 is substituted by the pseudoinverseT+.
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Figure 1: The multiresolution approach for the pure component factorization and with three levels of resolution, see Section 3.

2.1. Soft and hard models

The computation of a specific matrixT which deter-
mines a factorization in the sense of (2) suffers from the
rotational ambiguity of the solution [1, 2, 14, 18, 25].
Approximation techniques have been developed which
aim at a representation of the full range ofall feasible,
nonnegative factorizations [3, 7, 19, 21, 22, 24].

Here our focus is on the computation of asingleso-
lution which should fit to the chemical reaction system
under investigation in the best possible way. The most
common approach in order to favor a single solution is
to minimize a weighted sum of regularization functions
(soft-modeling) or to apply hard models like a kinetic
model. Then the resulting factorsC andA are the solu-
tions of a numerical optimization process.

For the soft model approach the target function reads

F : Rs×s→ R, T 7→ F(T) =
p∑

i=1

γi fi(T)2.

If a minimum of F(T) is taken inT̂, thenC = C[T̂]
andA = A[T̂]. Therein thep regularization functionsfi
are weighted with nonnegative parametersγi . Regular-
ization functions can be formulated for instance on the
nonnegativity of the factors or on their smoothness or
unimodality. Typically, the nonnegativity of the factors
is the most important constraint so that the associated
weight factor is relatively large.

Hard constraints are much more restrictive than soft
constraints. Approximately hard constraints can be im-
plemented by means of a constraint with a very large

weight factor. An important example of a hard con-
straint is a kinetic model whose consistency with the
solutionC is required.

Let K be the vector of theq kinetic parameters and
letC(ode)be the associated solution of the kinetic model.
This allows to computeT = (C(ode))+UΣ(:, 1 : s) as well
asC = UΣT−1 andA = TVT . Then the function

G : Rq→ R : K 7→ ‖C −C(ode)‖F + pen. terms (3)

is taken as a measure how well a kinetic model
parametrized withK fits to a nonnegative factorization.
The penalty terms in (3) are used to suppress negative
matrix entries. All this results in an optimal fit with the
kinetic model [5, 9, 20].

2.2. Computational costs

The costs for the computation ofC andA depend on

- computational costs for one evaluation of the func-
tion F and

- the number of necessary function calls for its iter-
ative minimization.

In general it holds thats≪ k, n so that the dependence
of the costs on the dimension parametersk andn is deci-
sive. In Section 3.1 of [21] a detailed discussion shows
that the computational costs for a proper implementa-
tion increase linearly ink + n if a small negative lower
bound is used for the acceptable relative negativeness of
the factorsC andA. Additionally the number of neces-
sary iterations for the minimization ofF is decisive for
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the computational costs of the numerical algorithm. A
good initial value can be expected to result in a small
number of iterations for the correction.

The multiresolution approach reduces the costs on
both fronts: for low-resolution factorization problems
the costs for single function calls are relatively small
and at each refined level reliable initial values are pro-
vided for the iterative minimization.

3. The multiresolution approach for the pure com-
ponent factorization

Modern computerized spectroscopic devices can pro-
duce considerable amounts of data, e.g. UV-Vis diode
array systems can generate several megabyte of data
within short time periods. Hence the dimensionsk and
n of the spectral data matrixD ∈ R

k×n can be large
and high computational costs are to be expected for a
direct nonnegative factorizationD = CA of the high-
dimensional matrixD.

The general approach for our multiresolution tech-
nique for the pure component factorizationD = CA ∈
R

k×n is as follows:

Algorithm: Multiresolution factorization

1. Starting from D = D(0) a sequence of lower
dimensional submatrices D(1), . . . ,D(L) is gener-
ated. These matrices represent D on coarser time-
frequency grids, see left side of Figure 1.

2. Compute a pure component factorization D(L) =

C(L)A(L) for the coarsest problem of lowest resolu-
tion, see right lower part of Figure 1.

3. Prolongate this solution in order to generate ini-
tial values of the iterative minimization for the fac-
torization problem on the next finer time-frequency
grid.

4. Compute the pure component factorization with re-
spect to the current grid.

5. Repeat steps 3 and 4 until a factorization D=
D(0) = C(0)A(0) with respect to the finest grid is
determined, see right upper part of Figure 1.

Step 2 for a small matrixD(L) can be completed
rapidly. With a proper prolongation of the solution in
step 3 the factorization in step 4 requires few iterations.
In the following we demonstrate that the multiresolution
approach can result in a considerable convergence ac-
celeration. However, the whole procedure requires that

the time and frequency discretization parameters (sam-
pling rates) are small enough that they can resolve the
signals along the time and frequency axes.

3.1. Sequence of coarsened subproblems

The multiresolution approach requires that the sam-
pling rates along the time axis and the frequency axis
are small enough so that the sampled signal can still
approximate (by interpolation) the original signal; this
prerequisite is related to the Nyquist-Shannon sampling
theorem of digital signal processing [23]. The theorem
says that the sampling frequency of a signal should be
at least twice the maximal frequency of the signal in
order to guarantee an exact reconstruction. Practically
the time step between two spectra should be small com-
pared to the change of the concentration values and the
frequency step should be small compared to the change
of the absorption values.

Figure 2 demonstrates that the singular value decom-
position is not very sensitive with respect to the data
coarsening. To this end we consider the spectral data for
the hydroformylationprocess; the details on this data set
are explained in Section 4.3. This data set comes with
k = 2621 spectra andn = 664 wavenumbers. If we use
a coarsening only along the time axis and if the subma-
trices have the dimensions⌈2621/2i⌉×n for i = 0, . . . , 9,
then the properly scaled singular vectors of these matri-
ces look very similar and the singular values show only
small variations. (In the last sentence the ceiling func-
tion ⌈q⌉, which is the smallest integer number larger or
equal toq, is introduced in Definition 3.1.)

3.2. Notation for the coarsened problems

Next the level indexℓ is introduced in order to enu-
merate the different levels of resolution of the factor-
ization problem. This indexℓ is added in brackets to
the related matrices, singular value decomposition and
to the associated target function. The starting point for
the multiresolution approach is the initial spectral data
matrix D = D(0) ∈ R

k×n. The levelℓ = 0 is the level
of highest resolution. The levels of coarsened problems
areℓ = 1, 2, . . .L up to a maximal indexL.

- The submatrixD(ℓ) of D represents a sampling with
respect to the time and frequency index vectorst(ℓ)

andλ(ℓ), i.e. D(ℓ) = D(t(ℓ), λ(ℓ)). The vectort(ℓ) is
a subvector of the vector 1 :k = (1, 2, . . . , k) and
the vectorλ(ℓ) is a subvector of the vector 1 :n =
(1, 2, . . . , n).

- The SVD ofD(ℓ) reads

D(ℓ) = U (ℓ)Σ(ℓ)V(ℓ)T
. (4)
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Figure 2: Rescaled singular values and rescaled singular vectors ofD and its submatrices for a coarsening along the time axis. SeeRemark 3.3 and
Equation (8) for the proper scaling.

- The target function for the hard- or soft modeling
optimization is denoted by

F(ℓ) : Rp→ R (5)

wherep is the number of unknown parameters. For
the soft-modeling method, see Section 2.1, it holds
that p = s2 or p = s zand for the a kinetic hard
modelp is the number of kinetic parameters.

- The sequence of matricesT, see Equation (2), with
respect to the coarsening levelℓ and theith itera-
tion step isT(ℓ,i), i = 0, . . . ,Nℓ. The number of
iterations on levelℓ is Nℓ. The optimal and final
matrix is denoted̂T(ℓ).

- The pure component factors areC(ℓ) andA(ℓ).

3.3. Definition of the multiresolution hierarchy

Next we define the hierarchy of subproblems for the
factorization problem. For the coarsening it is impor-
tant that the reduction of the dimension is large enough
so that the computing time saving is significant. The re-
duction should also be small enough so that the solution
with respect to a certain levelℓ after its prolongation
is a good initial estimate for the levelℓ − 1 of the next
problem with a higher resolution.

Next the colon notation as well as the floor and ceil-
ing functions are introduced.

Definition 3.1. For an integer number m the notation
1 : m defines the vector(1, 2, . . . ,m) of integers. Further
1 : δ : m with the incrementδ denotes the vector(1, 1+
δ, 1+ 2δ, . . . , 1+ kδ) with the largest possible k so that
1+ kδ ≤ m. For example1 : 3 : 9represents the integer
vector(1, 4, 7). Further the floor and ceiling functions
are given by

Floor function ⌊x⌋ = max{m ∈ Z : m≤ x},
Ceiling function⌈x⌉ = min{m ∈ Z : m≥ x}.

The principles of the problem coarsening are as fol-
lows:

1. The original spectral data matrixD = D(0) ∈ Rk×n

can formally be written as

D(0) = D(t(0), λ(0))

with t(0) = 1 : k andλ(0) = 1 : n.
2. The different levels of resolution are enumerated

by ℓ = 0, . . . , L.
3. Two monotone increasing sequences of index in-

crements determine the coarsening process. For
the time axis letτ be the vector of increments, and
for the frequency axis letχ be the vector of incre-
ments. This reads

τ := [τ0, τ1, . . . , τL], χ := [χ0, χ1, . . . , χL]. (6)

With τ0 = χ0 = 1 it is assumed that

τℓ+1

τℓ
∈ N, χℓ+1

χℓ
∈ N (7)

for ℓ = 0, . . . , L − 1.
4. For the levelℓ let

t(ℓ) = 1 : τℓ : k, λ(ℓ) = 1 : χℓ : n

be sequences of subindexes of 1 :k and 1 :n. (The
first index set consists of⌊k/τℓ⌋ elements and the
second index set of⌊n/χℓ⌋ elements.)

5. The submatrixD(ℓ) is

D(ℓ) = D(t(ℓ), λ(ℓ)) ∈ R⌊k/τℓ⌋ × ⌊n/χℓ⌋.

Example 1. A possible choice for the spectral data ma-
trix from Section 4.3 with k= 2621and n= 664is

τ = [1, 2, 4, 8, . . . , 256] and χ = [1, 1, 1, . . . , 1].
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This results in a sequence of eight submatrices of D by
taking from levelℓ to levelℓ+1 only every second spec-
trum and by letting the spectra along the frequency axis
unchanged. The nine different matrices including the
original data matrix D = D(0) have the following di-
mensions:

D(0) ∈ R2621×664, D(1) ∈ R1311×664, D(2) ∈ R656×664,

D(3) ∈ R328×664, D(4) ∈ R164×664, D(5) ∈ R82×664,

D(6) ∈ R41×664, D(7) ∈ R21×664, D(8) ∈ R11×664.

Definition 3.2. The resolution levelℓ together with the
definitions from above can formally be written as a
triplet

S(ℓ) =
(
t(ℓ), λ(ℓ),D(ℓ)

)
.

The hierarchy of resolution levels is nested in the sense
that

S(L) ≺ S(L−1) ≺ · · · ≺ S(0) =
(
1 : k, 1 : n,D(0)

)
.

The relationS(i) ≺ S( j) is satisfied for i> j if and only
if t(i) is a subsequence of t( j) andλ(i) is a subsequence of
λ( j).

Remark 3.1. The assumptions on the nested sequence
of subproblems withS(i) ≺ S( j) implies that D(i) is a
submatrix of D( j). Thus the coarsest matrix D(L) is a
submatrix of D(0).

3.4. Prolongation and restriction operations for con-
secutive resolution levels

Having defined the different levels of resolution for
the pure component factorization problem, we still need
operations to restrict the problem from one resolution
level to the next coarser level and to transfer the result
from one level to the next finer resolution level. Fol-
lowing the common terminology in multigrid methods
[10] we denote these transfer processes asrestriction
andprolongationoperations.

Definition 3.3. A mappingP(ℓ) : S(ℓ+1) → S(ℓ) from
a coarse resolution problem to the next finer resolution
is called a prolongation. The restriction operation is a
mappingR(ℓ) : S(ℓ) → S(ℓ+1).

Remark 3.2. The prolongation and restriction opera-
tors should naturally satisfy thatR(ℓ) ◦ P(ℓ) is the iden-
tity operator onS(ℓ+1). However,P(ℓ) ◦ R(ℓ) is usually
not the identity operator onS(ℓ).

We do not only needP(ℓ) for the prolongation of
D(ℓ+1) to D(ℓ), but we must also prolongate the factors
C(ℓ+1) andA(ℓ+1) to the resolution levelℓ. The key point
is to execute this prolongation in an implicit manner by
considering the associated matricesT, i.e. an initial es-
timate forT(ℓ,0) is computed. Next three different ap-
proaches are suggested for the computation ofT(ℓ,0).

Definition 3.4. For given factors C(ℓ+1) and A(ℓ+1) with
respect to the resolution levelℓ+1 three alternative tech-
niques for the prolongation to the levelℓ are suggested;
this is formally written as a prolongation̂P(ℓ) of C(ℓ+1)

and A(ℓ+1) to T(ℓ,0). For each technique a least squares
problem is to be solved. Hence,

T(ℓ,0) = P̂(C(ℓ+1),A(ℓ+1)) = argmin
T
φi(T)

with optionally (for i= 1, 2 or 3)

φ1(T) =
∥∥∥A(ℓ+1) − T MT

1

∥∥∥2

F
,

φ2(T) =
∥∥∥C(ℓ+1) − M2T+

∥∥∥2

F
,

φ3(T) = φ1(T) + φ2(T)

and

M1 = V(ℓ)

(
1 :
χℓ+1

χℓ
:

⌊
n
χℓ+1

⌋
, 1 : z

)
,

M2 = U (ℓ)

(
1 :
τℓ+1

τℓ
:

⌊
k
τℓ+1

⌋
, :

)
Σ(ℓ)(:, 1 : z).

The first target functionφ1 only uses the structure of
A, namelyA(ℓ+1) is approximated in the least squares
sense by right singular vectors of the higher resolution
level. These vectors form the columns ofM1. Simi-
larly φ2 uses the structure inC in order to constructT+

from the augmented left singular vectors composed in
M2. Finally φ3 uses an averaging ofφ1 andφ2. These
prolongation strategies can be applied along the time
or frequency axis irrespective of whether a resolution
coarsening has previously been executed along this axis.
Each of these strategies to find a properT(ℓ,0) can be
very useful.

Remark 3.3. For a direct comparison of the singular
vectors and singular values with respect to different lev-
els of resolution one has to take into account their po-
tentially differing orientation by a multiplication with
−1. Furthermore, the different dimensions of the singu-
lar vectors, which are all normalized with respect to the
Euclidean norm, results in the following rescaling

1
√
τi

U (i),
1
√
χi

V(i), i = 0, . . . , L. (8)
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The insertion of columns or rows to D(i) also results in a
rescaling of the singular values. The simplest way to see
this is to consider either(D(i))TD(i) or D(i)(D(i))T whose
roots of the eigenvalues are (at least) the nonzero singu-
lar values of D(i). For the singular values the rescaling
is

√
τiχi Σ, i = 0, . . . , L. (9)

3.5. Algorithm of the multiresolution procedure

The multiresolution procedure can be applied to any
SVD based multivariate curve resolution method in-
cluding the matrixT by (2) and regardless of the used
regularization. The algorithmic steps are as follows:

1. The multiresolution sequence of matricesD(ℓ) is
determined by fixing the number of resolution lev-
els L and the vectorsτ andχ of increments, see
Equation (6).

2. On the coarsest levelℓ = L with the lowest res-
olution an initial nonnegative factorizationD(L) =

C(L)A(L) is computed by means of a minimization
of the target functionF(ℓ).

3. Then forℓ = L− 1, L− 2, . . . , 0 the following steps
are executed
(a) The prolongation̂P(ℓ) with one of the target

functionsφ1, φ2 and φ3 is used in order to
compute the initial matrixT(ℓ,0) on the level
ℓ.

(b) The iterative minimization for the target func-
tion F(ℓ) is executed. The minimum is at-
tained in the factorsC(ℓ) andA(ℓ) for the reso-
lution levelℓ.

4. The final solutions areC = C(0) andA = A(0) on
the levelℓ = 0 of highest resolution.

3.6. Benefit of the multiresolution procedure

The multiresolution procedure serves to accelerate
the computation of nonnegative factorizations of the
spectral data matrix of medium- and high-dimensional
data. The computational costs, see Section 2.2, depend
on the computational costs for a single step and on the
total number of required iterations.

The multiresolution procedure reduces these costs by
generating a sequence of coarse resolution approxima-
tions, which can each be computed with drastically re-
duced computational costs. Moreover, the final iterate
with respect to a certain resolution levelℓ is a good ini-
tial estimate for the next resolution levelℓ − 1. An effi-
cient and fast-converging multivariate curve resolution
method can be constructed by a suitable combination of
the problem coarsening and the approximate solution of

the low resolution problems. Below the line, computa-
tional costs are saved by introducing additional levels of
resolution.

One could object that the multiresolution procedure is
applied tooversampled dataand that any savings of the
computational costs originate from reducing the prob-
lem to a reasonable level of resolution. To some ex-
tent this is true. However, modern computerized spec-
troscopic instruments usually result in high-resolution
data. Then it is not clear a-priori which level of reso-
lution is sufficient in order to extract the desired spec-
troscopic detail information. To be on the safe side,
one usually accepts oversampling and applied the MCR
method to the full data set. Further on, poorly resolved
data can even allow to compute good initial approxima-
tions for pure component factorizations with respect to
the next level of resolution. Thus the multiresolution
procedure can also work without oversampled data.

3.7. Multiresolution techniques and hard-modeling
The underlying idea of the multiresolution procedure

can be extended to hard-modeling [5, 15]. To this end
the hard model is implanted into each level of reso-
lution. On the coarsest level a first approximation of
the kinetic parameters is calculated and these values are
used as initial values on the next refined resolution level.
This procedure is repeated level by level. Hence the
prolongationP is not needed for the implementation of
a hard model.Computationally, the problem is to mini-
mize the functionG(K) as introduced in (3). This results
in a vectorK of kinetic parameters so that the associated
solutionC(ode)optimally fitsC. The computational costs
for the solution of this optimization problem depends
on the number of function evaluationsG(K). The costs
for a single function evaluation consist of the compu-
tational costs for the ODE solver (these costs are more
or less constant and do not depend on the level of res-
olution) and on the costs for computing the approxima-
tion errorC − C(ode) with optimally scaledC(ode). The
costs for the latter computations are proportional to the
dimension of the current level of resolution, namelyk
andn or a fraction of these numbers. This dependence
on k andn is the crucial point why the multiresolution
approach can accelerate the computations. Once again,
good initial approximations forK can be computed on
the coarse levels and these results are reused by prolon-
gation on the levels of higher resolution. The number
of coarse level iterations has a minor impact on the to-
tal computational costs due to the smaller dimensions
of D(ℓ). Finally, on higher levels of resolution only few
of the more costly iterations are needed.In Section 4.5
this technique is demonstrated for experimental spectral
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Figure 3: The pure component factorsC andA of the four component
model problem from Section 4.2.

data. This leads to savings of about 90% of the comput-
ing time.

3.8. Selection of the coarsening increments

A proper selection of the vectors of coarsening incre-
ments (6) appears to be decisive for a successful mul-
tiresolution procedure. In our experimentsτ or χ be-
ing equal to [1, 2, 4, . . . ] always work in a stable way.
In some instances the vector of coarsening increments
[1, 4, 8, . . . ] appears to result in an over-coarsening of
the problem so that the final iterates cannot result in re-
liable initial estimates on the next finer resolution level.
However, all this depends on the relation of the amount
of data and the variability or dynamics of the data,
cf. the discussion in the first paragraph of Section 3.3.

4. Numerical results

4.1. Hard- and software information

All computations have been performed on a PC with
an Intel Quadcore 64bit processor with 3.4Ghz and
16GB RAM. Without parallelization only one core has
been used for the computations. The program code has
been written in C and uses a nonlinear least-squares op-
timizer code NL2SOL of the ACM [6] written in FOR-
TRAN. For the solution of the initial value problems for
ordinary differential equations, which are kinetic hard
models in Section 4.3, we use the prominent RADAU
IIa codes [11]. The very effective FORTRAN imple-
mentation of the RADAU algorithms is available under
the web address

http://www.unige.ch/ hairer/prog/stiff/radau.f .

4.2. Application to a model problem

Next the multiresolution approach is applied to the
consecutive reaction system withs= 4 components

A
k1−→ B

k2−→ C
k3−→ D.

The concentration profiles of the four components are
determined by the rate constantsk1 = 1, k2 = 2, k3 = 1
and by the initial concentrations (1, 0, 0, 0). The time in-
terval t ∈ [0, 10] is subdivided byk = 1001 equidistant
grid points. The pure component spectra are Gaussian
profiles within the intervalλ ∈ [0, 100] with n = 2001
equidistant grid points. HenceD = CA ∈ R

1001×2001.
The pure component spectra and concentration profiles
are shown in Figure 3.

The relatively large dimension parametersk = 1001
andn = 2001 indicate that the spectra and concentra-
tion profiles are oversampled; cf. the discussion on over-
sampling in Section 3.6. Thus the acceleration effect of
the multiresolution factorization can clearly be demon-
strated. Next two coarsening strategies are tested:

1. Simultaneous coarsening in the time and in the fre-
quency direction.

2. Coarsening only in the frequency direction.

For these computations nine different runs of the
multiresolution factorization with the numbersL =

0, 1, . . . , 8 of resolution levels are used. The computa-
tion for L = 0 represents the case of a direct compu-
tation of the pure component factorization without any
coarsening of the time-frequency grid.

4.2.1. Active soft constraints and evaluation criteria
For all computations soft constraints are used on the

nonnegativity of the factorsC andA. The reconstruction
error‖D−CA‖F is controlled by evaluating‖I −TT+‖F
whereT+ is the pseudoinverse ofT. Additionally we
use a constraint on the integral of the spectra (where
each spectrum is normalized to a maximum equal to 1)
in order to favor spectra with a small number of sharp
peaks. With these constraints the original factors can be
reconstructed in all program runs.

For the purpose of a comparison of the numerical
results, the computation times are recorded together
with number of inner iterations until termination of the
NL2SOL code, see Section 4.1. Moreover, the compu-
tation times for all intermediate levels are collected.On
the coarsest grid level withℓ = L the computation of a
first solution starting from an initial random guess de-
cisively influences the computational costs of the opti-
mization algorithm. Typically no good initial estimates
are available on the coarsest level of resolution. These
can be produced by a genetic algorithm. On all finer
levels withℓ < L we only used the Gauss-Newton al-
gorithm for the minimization in the form of its sophisti-
cated implementation in the NL2SOL code [6].

In order to avoid any influence of poor initial esti-
mates the multiresolution program, including the ge-
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netic algorithm, is run 20 times.The two program runs
with the highest computation times are ignored, and also
the two program runs with the minimal computation
times are dropped. For the remaining 16 program runs
we tabulate the mean values of the computation times
and for the required number of iterations.

4.2.2. Multiresolution factorization in time and in fre-
quency direction

First the time-frequency grid is coarsened in each of
the coordinate directions. Together withL = 9 the vec-
tors of coarsening increments, see (6), are

τ = χ = (1, 2, 4, 8, 16, 32, 64, 128, 256).

Hence the number of grid points is doubled along the
time direction and also along the frequency direction for
every transition from one level of resolution to the next
refined level. ThusD(0) = D ∈ R

1001×2001 andD(9) ∈
R

4×8.
Tables 1 and 2 show the mean values for the com-

putation times and the associated numbers of necessary
iterations with respect to all intermediate levels of reso-
lution. These data indicate that the multiresolution fac-
torization works very well. The computation times for
L = 2, . . . , 8 are about a third of the computation time
without any multiresolution computation, i.e. the case
L = 0. If for L = 1 only a single grid coarsening is
used, then the saving of the computation time are about
50%. The results also show that there are nearly no sav-
ing beyondL = 2 with D(2) ∈ R251×501.

4.2.3. Multiresolution factorization in frequency direc-
tion

The multiresolution factorization can alternatively be
applied either to the frequency direction or to the time
direction. To demonstrate this, we set the coarsening
increments to

τ = (1, . . . , 1), χ = (1, 2, 4, 8, 16, 32, 64, 128, 256),

which amounts to a coarsening in the frequency direc-
tion. The computation times and the numbers of nec-
essary iterations for all intermediate levels are listed in
Tables 3 and 4.

For this coarsening strategy the multiresolution fac-
torization works best forL = 2, . . . , 4 with savings for
the computational costs of about 50%. If largerL are
used, then the computational costs increase again as no
coarsening is applied along the time direction. Then the
computational costs suffer from relatively large costs for
the prolongation operations and for the refinement iter-
ations which still work with the full resolution along the
time direction.
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Figure 4: FT-IR spectroscopic data from the rhodium catalyzed hy-
droformylation process [13]. Only every 50th of thek = 2621 spectra
is plotted.

4.3. Application to experimental data from the hydro-
formylation process

In this section the multiresolution factorization is
tested for FT-IR spectroscopic data from the hydro-
formylation of 3,3-dimethyl-1-butene with a rhodium
monophosphite catalyst ([Rh]= 3 × 10−4mol/L) in n-
hexane at 30◦C, p(CO)= 1.0 MPa and p(H2) = 0.2
MPa; for the details see [13]. Figure 4 shows a sub-
set of the sequence ofk = 2621 spectra. Each spec-
trum hasn = 664 channels in the wavenumbers win-
dow [1960.1, 2120.0]cm−1. In this window the absorp-
tion by the reaction product, the aldehyde, is negligible.
A number ofs = 3 dominant components, namely the
olefin, the acyl complex and the hydrido complex, con-
tribute to the absorption in the selected frequency win-
dow.

4.3.1. The multiresolution hierarchy
In the first experiment we use soft-modeling with

a constraint function which penalizes negative compo-
nents. We also use a constraint function on the distance
of the concentration profiles to the Michaelis-Menten
model

S + K
k1

GGGGGBF GGGGG

k−1

[S−K]
k2−→ P+ K (10)

with a simultaneous optimization of the kinetic param-
eters [20]. The components are the substrate (S), the
catalyst (K), the substrate-catalyst complex (S-K) and
the product (P).Since the productP does not contribute
to the absorption in the selected wavenumbers window,
this component is considered in the model but is not a
part of the regularization function.
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level indexℓ times [s] for
L 0 1 2 3 4 5 6 7 8 all levels
0 24.94 24.94
1 6.97 7.39 14.36
2 5.39 1.52 1.39 8.30
3 5.85 1.20 0.28 0.36 7.69
4 6.46 1.13 0.24 0.07 0.15 8.04
5 5.33 1.22 0.24 0.08 0.02 0.08 6.96
6 5.92 1.26 0.27 0.08 0.02 0.00 0.05 7.60
7 6.99 1.16 0.28 0.09 0.02 0.01 0.00 0.02 8.56
8 5.42 1.32 0.28 0.08 0.02 0.02 0.01 0.00 0.02 7.17

Table 1: Computing times [s] for the self-modeling multiresolution factorization with respect to all levels of resolution. The fastest computation
with L = 5 needs only 6.96 seconds (mean value). This is more than three times faster than solving the original problem with respect to the level
of highest resolutionL = 0.

level indexℓ
L 0 1 2 3 4 5 6 7 8
0 20
1 1 22
2 1 1 23
3 1 1 1 26
4 1 1 1 2 32
5 1 1 1 2 1 41
6 1 1 1 3 1 2 39
7 2 1 1 4 1 4 2 37
8 1 1 1 3 1 6 6 12 57

Table 2: NumbersNℓ of iterations with respect to the single levels for the minimization ofF(ℓ). A relatively large number of iterations is required
only for ℓ = L. These iterations are computationally much cheaper with respect to larger level indexesℓ compared to smaller level indexes.

level indexℓ time [s] for
L 0 1 2 3 4 5 6 7 8 all levels
0 25.37 25.37
1 5.45 10.10 15.55
2 4.56 2.06 6.08 12.69
3 5.20 1.71 1.23 5.52 13.66
4 5.19 1.66 1.03 1.00 4.67 13.56
5 4.56 1.63 1.04 0.94 0.95 9.08 18.19
6 5.34 1.68 0.97 0.82 0.77 0.90 7.60 18.07
7 5.40 2.03 0.98 0.84 0.80 0.76 2.72 9.30 22.83
8 5.64 2.08 0.99 0.85 0.80 0.76 2.05 2.76 12.37 28.29

Table 3: Computing times [s] for the self-modeling multiresolution factorization. Grid coarsening is only used along the frequency axis. Best
results are achieved forL = 2, . . . ,4. A stronger coarsening in the frequency direction withoutsimultaneous coarsening along the time axis turns
out to be ineffective.
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level indexℓ
L 0 1 2 3 4 5 6 7 8 9
0 21
1 1 25
2 1 1 24
3 1 1 1 25
4 1 1 1 1 24
5 1 1 1 1 1 48
6 1 1 1 1 1 1 41
7 1 1 1 1 1 1 10 49
8 2 2 1 1 1 1 8 12 66

Table 4: NumberNℓ of iterations with respect to the single levels for the minimization of F(ℓ). In all cases a relatively large number of the
computationally cheap iterations is required only forℓ = L, whereas forℓ < L in most cases a single iteration is sufficient.

The multiresolution procedure is tested for a grid
coarsening only in the time direction and for a simulta-
neous coarsening in the time and in the frequency direc-
tions. The numerical results are presented in the form
of mean values as explained in Section 4.2.1.

4.3.2. Multiresolution in time direction
For a grid coarsening only in the time direction we

set

τ = [1, 2, 4, . . . , 2L], χ = [1, 1, . . . , 1] (11)

for L = 0, 1, . . . , 8. The computation times and the num-
bers of iterations until termination are listed in Table 5
and Table 6. The results show an acceleration of the
computation by a factor of about 5 for a multiresolu-
tion computation withL = 6. These results are to be
compared with the caseL = 0 which corresponds to the
standard multivariate curve resolution method without
any multiresolution acceleration. The numerical data
on the numbers of required iterations show for increas-
ing L that the numbers of the computationally expensive
iterations on levels with small indexesℓ are decreasing.
ForL ≥ 1 not more that six iterations are required on the
levelℓ = 0. This expresses the accelerating effect of the
multiresolution factorization: A relatively large number
of iterations is only used on the coarsest levelℓ = L of
the lowest resolution. For all other levelsNℓ is much
smaller since a reliable initial estimate from the coarser
levels results in a relatively small number of iterations.
These results clearly indicate the acceleration effect of
the multiresolution procedure.

The computational results for all resolution levels for
the caseL = 8 are shown in Figure 5. The variations of
the different curves are small. This demonstrates that
the submatrixD(L) of D for the coarsest level allows

an acceptable approximation of the ”true” solutions for
D = D(0).

4.3.3. Multiresolution in time and frequency directions
For a simultaneous grid coarsening along the time di-

rection and the frequency direction we set

τ = [1, 2, 4, . . . , 2L] and

χ = [1, 2, 4, . . . ,min(16, 2L)]

for L = 0, 1, . . . , 8. With these vectors of index incre-
ments the grid coarsening along the frequency direction
is stopped forℓ ≥ 5. Together withn = 664 this selec-
tion guarantees that always a minimum of 42 absorption
values are used for the computations. The computation
times and the numbers of iterations until termination are
listed in Table 7 and in Table 8.

Once again the numerical results show an accelera-
tion of the computation by a factor of about 5. All these
results are to be compared with the caseL = 0 which
corresponds to the standard multivariate curve resolu-
tion method without any multiresolution acceleration.
The interpretation of the numbers of iterations is very
similar to that given in Section 4.3.2. We conclude that
the two coarsening strategies work very well. The sav-
ing in the computational time for the given spectral data
with k = 2621 separate spectra andn = 664 spectral
channels for each spectrum are primarily determined by
the coarsening along the time direction.

4.4. Convergence history

For an effective numerical minimization of the func-
tions F(ℓ) our program code uses the adaptive non-
linear least-squares minimization algorithm NL2SOL,
cf. Section 4.1. The convergence history is monitored
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level indexℓ time [s] for
L 0 1 2 3 4 5 6 7 8 all levels
0 53.90 53.90
1 5.63 16.03 21.66
2 6.01 2.85 4.99 13.85
3 8.70 2.62 0.91 1.41 13.64
4 9.23 2.13 0.77 0.43 1.23 13.78
5 7.07 2.61 0.89 0.50 0.64 1.29 13.01
6 6.16 2.38 0.76 0.36 0.56 0.71 0.54 11.49
7 8.67 2.21 0.69 0.61 0.55 0.37 0.32 0.37 13.81
8 6.80 2.05 0.62 0.33 0.39 0.38 0.25 0.31 0.58 11.71

Table 5: Computation times [s] for the soft-modeling multiresolution procedure for each level. The last column contains the total times for the
differentL. The fastest computation withL = 6 levels of resolution needs only 11.49 seconds. This is about 20% of the total computation time for
solving the original problem with respect to level of highest resolution (L = 0).

level indexℓ
L 0 1 2 3 4 5 6 7 8
0 37
1 3 39
2 4 6 40
3 6 6 7 26
4 6 5 6 7 35
5 5 5 6 9 18 50
6 4 5 5 6 16 27 24
7 6 5 5 11 15 13 13 17
8 5 5 5 6 11 13 10 14 37

Table 6: NumbersNℓ of iterations for the minimization ofF(ℓ) for each levelℓ = 0, . . . , L for the case of soft modeling. In all but one the largest
number of iterations is used on the coarsest level of resolution ℓ = L. These data clearly indicate that the multiresolution procedure accelerates the
computation. ForL = 0 a number of 37 iterations on the finest level with high computational costs is needed. ForL = 1 only 3 iterations on the
finest level are required together with 39 (computationallymuch cheaper) iterations on the levelℓ = 1.
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Figure 5: Concentration profiles and spectra for the pure components with respect to all levels of resolution for a computation with L = 8. The
color assignment is as follows: Red - olefin, blue - acyl complex and green - hydrido complex.
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level indexℓ time [s] for
L 0 1 2 3 4 5 6 7 8 all levels
0 53.90 53.90
1 5.40 12.79 18.19
2 7.46 2.13 3.61 13.20
3 8.97 2.02 0.60 0.89 12.49
4 9.80 1.86 0.84 0.42 0.44 13.37
5 7.51 2.14 0.80 0.27 0.33 0.28 11.34
6 8.01 2.45 0.75 0.33 0.24 0.13 0.11 12.02
7 6.83 2.52 1.03 0.43 0.24 0.09 0.06 0.07 11.27
8 8.72 2.17 0.48 0.27 0.19 0.13 0.07 0.04 0.10 12.17

Table 7: Computation times [s] for the soft-modeling multiresolution factorization with grid coarsening along the time and along the frequency axis.
The fastest computation withL = 7 levels of resolution needs only 11.27 seconds (mean values), which is a considerable acceleration compared to
a direct factorization with respect to level of highest resolution (L = 0) with 53.90s.

level indexℓ
L 0 1 2 3 4 5 6 7 8
0 37
1 3 33
2 5 5 36
3 6 5 5 25
4 7 4 7 12 30
5 5 5 7 7 21 39
6 5 5 6 9 15 17 24
7 4 6 9 12 15 12 10 23
8 5 5 4 7 12 17 13 10 33

Table 8: NumbersNℓ of iterations for the minimization ofF(ℓ) for each levelℓ = 0, . . . , L. In all cases the largest number of iterations is used on the
coarsest level of resolutionℓ = L. For largerℓ the computational costs for the computation of the initial approximation are considerably decreasing.
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by means of two error measures. On the one hand the
squared target function

eℓ, j =
1
2

F(ℓ)(T(ℓ, j))2

is traced forℓ = L, . . . , 0 and for everyℓ with j =
0, . . . ,Nℓ. On the other hand the distance of the iterates
T(ℓ, j) to the final matrix̂T(ℓ) at the end of the iteration

fℓ, j =
∥∥∥∥T(ℓ, j) − T̂(ℓ)

∥∥∥∥
F

is recorded forℓ = 0, . . . , L and j = 0, . . . ,Nℓ − 1.
Therein‖ · ‖F is the Frobenius norm.

Figure 6 shows the convergence history for the case
of grid coarsening only along the time axis forL = 6.
Especially on the coarsest levelℓ = 6 with 38 iterations
the convergence history shows a significant decrease of
the error. For the prolongated problems on the levels
ℓ = 5, . . .0 the reduction of the errors is relatively small.

4.5. Hard-modeling and multiresolution

In Section 3.7 the principles of a combination of a
hard model and the multiresolution approach are ex-
plained. Next this is demonstrated numerically. The
vectors of increments areτ = [1, 2, 4, . . . , 2L] andχ =
[1, 1, . . . , 1] which are the same values as in Section
4.3.2. On each level the problem is forced to be con-
sistent with the kinetic hard model and the results in the
form of three kinetic parameters are used as the initial
values for the next finer level of resolution. In nine dif-
ferent numerical experiments the numbers of levels are
L = 0, . . . ,L = 8. ForL = 0 the kinetic parameters are
computed with respect to the problem of highest resolu-
tion, and forL = 8 the coarse grid solutions are used in
8 cycles as initial values for the next higher resolution
problem. For each of these experiments additionally a
genetic algorithm has been used for the first steps on the
coarsest level in order to solve the optimization problem
in a fast and reliable way.

Figure 7 shows the solutionsC(ℓ) and A(ℓ), ℓ =
1, . . . , L, for the experiment withL = 8. The solu-
tions show only small variations which indicates that
even the coarsest level of resolution provides a suffi-
cient approximation of the problem. Table 9 contains
the computation times for nine different program runs
with L = 0, . . . , 8. The computation times for the single
levelsℓ = 0, . . . , L are listed rowwise. The fastest com-
putation forL = 7 needs only 2.79 seconds compared
to 26.64 seconds for the original problem on the finest
level of resolution.

Finally Table 10 presents the numbers of iterations
required forL = 0, . . . , 8 andℓ = 0, . . . , L. Once again

this clearly indicates that the multiresolution procedure
is a successful strategy for the convergence acceleration.

5. Conclusion

Multigrid, multilevel and multiresolution methods
are effective numerical algorithms for the solution of
a range of high-dimensional optimization and related
problems. In the present paper a multiresolution ap-
proach to the solution of pure component factorization
problems for bivariate spectral data sets has been pre-
sented. This algorithm can considerably accelerate the
convergence for medium- and high-dimensional spec-
tral data sets. The method has successfully been applied
to multivariate curve resolution methods including soft
and hard models.

Perspectively, multiresolution techniques can also be
applied to the complicated and costly computations of
the area of feasible solutions (AFS), see [7, 21]. How-
ever, such an area of application is not straightforward
and requires further investigations and the development
of proper numerical tools.
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level indexℓ time [s] for
L 0 1 2 3 4 5 6 7 8 all levels
0 26.64 26.64
1 1.11 13.51 14.63
2 0.85 0.58 7.49 8.91
3 0.94 0.49 0.31 3.87 5.62
4 0.91 0.52 0.28 0.14 1.92 3.76
5 0.82 0.52 0.30 0.19 0.14 1.27 3.23
6 0.90 0.51 0.29 0.19 0.14 0.10 0.89 3.01
7 0.89 0.49 0.25 0.16 0.12 0.11 0.08 0.68 2.79
8 0.87 0.49 0.30 0.18 0.12 0.10 0.10 0.09 0.63 2.88

Table 9: Computation times [s] for the hard-modeling approach and for nine different program runs forL = 0, . . . , 8. The computation times for
the single levelsℓ = 0, . . . , L are listed rowwise. The fastest computation forL = 7 needs only 2.79 seconds compared to 26.64 seconds for the
original problem on the finest level of resolution.
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level indexℓ
L 0 1 2 3 4 5 6 7 8
0 65
1 15 61
2 10 15 49
3 12 12 14 48
4 12 13 13 10 40
5 10 13 13 13 18 39
6 12 12 12 13 18 20 37
7 12 12 11 10 15 22 21 35
8 11 11 14 11 14 21 27 30 25

Table 10: NumbersNℓ of iterations for the minimization ofF(ℓ) for each level levelℓ = 0, . . . L for the hard-modeling case. A genetic algorithm is
used for each program run on the coarsest level of resolutionℓ = L. The mean values of the numbers of iterations are listed in a way as explained
in Section 4.2.1.
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