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ABSTRACT

A short review of the different approaches to the justification of the Neglect of Diatomic
Differential Overlap in the basis of symmetrically orthogonalized basis functions is
given. Brown and Roby employed the binomial expansion for the approximation of the
inverse square root of the overlap matrix. For some overlap matrices, this expansion
does not converge. The always-convergent power series given by Chandler and Grader
provides a worse second-order approximation in comparison with the second-order
binomial expansion. ® 1995 John Wiley & Sons, Inc.

Introduction

T he often-cited so-called “computational bot-
tleneck” in quantum chemistry describes the
problem of calculation, storing, and processing
the O(N*) electron repulsion integrals that arise
in ab initio quantum chemical calculations with N
basis functions.

There are basically two strategies of solution
of this problem: Recently discussed developments,
which are implemented in the direct-SCF method,

make use of the fact that the number of “impor-
tant” integrals, which exceed a small threshold, is
proportional to N2 In N [1,2]. Such an upper bound
is given, for instance, by the Cauchy-Schwarz in-
equality by interpreting the two-electron integral
as a scalar product on the linear space of charge
distributions. These approximative methods can be
characterized by an adaptive algorithm, ie., inte-
grals will not be neglected a priori but in the
course of the computation depending on the abso-
lute value of these integrals or on an upper bound,
respectively.
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In contrast to that, a great number of approaches
for neglecting a specific part of a priori-specified
two-electron integrals have been given in quantum
chemistry. These algorithms must be distinguished
from the first stream because they are based upon
a structural criterion. All types of neglected inte-
grals are a priori-fixed. Most of these proposals
are applied in semiempirical calculation methods.
Exact upper bounds for the error introduced by the
neglect of repulsion integrals are often unavailable;
consequently, the reliability of these methods is
only restricted.

In this series of articles, it will be investigated
whether the Neglect of Diatomic Differential Over-
lap (NDDO) method belonging to the second class
of algorithms neglects only unimportant integrals.
Several attempts have been made to justify the Ne-
glect of Differential Overlap (NDO) approximation
in a basis of symmetrically (Léwdin) orthogonal-
ized functions [3-7]. The most favorable case of
this class is that of NDDO, which can be described
by assuming disjoint supports for functions that are
localized at different centers:

pnat)vp) =0  for A # B.

The basis function (orbital) u, is localized at atom
A and vjp is localized at atom B. The NDDO approxi-
mation is usually applied to two-electron integrals:

(,LLAVBchg'D)""O forA#BorC+# D,

where the integral is given by

(mave|kcop) = f dridrop™ (ry = Ra)
X v(r; = Rp)lry = ra| ™!
X k*(r2 = Re)o(r: ~ Rp).
In the past, it was shown that the symmetrically

orthogonalized (Lowdin) basis is appropriate for
the application of NDDO.

THE LOWDIN BASIS

Let (¢1,...,¢n) be the row vector of a nor-
malized, linearly independent set of N localized
real basis functions (atomic orbitals) and define the
overlap matrix A:

A= [ e (G1o s S8 (B1r- . )

(¢t denotes the transpose) with matrix elements

A,u,v = (¢,U-A I ¢"5)
= f dr ¢, (r — Ra)¢,(r — Rp),

where R, is the position vector of atom A and w4
is localized at atom A. A is a positive definite and
symmetric matrix. We will assume later that this
set of functions is locally orthogonalized, i.e., local
orthogonality is assumed at each atomic center,
confer [4]. For the present, we make no use of this

property.
This set of functions can be transformed to the
symmetrically orthogonalized basis by

Asee s AN) = (b1,..., dN)A™2,

These functions are orthonormal because

N N
A1) =D DA Pyuldi | 1) (A2
k=1 I=1
— (A'”zAA“l’z),-j = 5.

The matrix representation of a one-electron opera-
tor over the Lowdin basis reads

AM = A—1/2 ¢MA_1/Z. (1)

The left superscript A denotes the Lowdin basis;
analogously, ¢ indicates that the matrix elements
are calculated in the ¢-basis.

The charge density matrix  in the ¢-basis
($i)i=1,...n

Q= (¢1"--’¢N)t(¢l"--s ¢N)’ (2‘)

transforms like one-electron operators into the
Lowdin basis:

)‘Q = A—IIZQA—IIZ. (3)
Thus, the repulsion integrals are given by

)‘(/"V | KU‘) = ()‘\Q/.w(l) I A\Q'Ka‘(2))

= ﬂdrldrz )‘Q,“,(l)

X -nl™ 062, @)

Justification of NDDO by Polynomial
Expansions of A~12

In the following articles, only justifications of
NDDO employing a polynomial expansion for the
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NEGLECT OF DIATOMIC DIFFERENTIAL OVERLAP. II

approximation of A~'? will be investigated. An
expansion in § = A — I (I is the identity matrix)
was given by Brown and Roby [3]. This expansion
was revised by Chandler and Grader [4]. There,
they also briefly reviewed the different approaches
to the justification of NDDO. Here, Roby’s approach
[8] using a complete set of basis functions on
each atom will not be treated further, because the
assumption of completeness is an extremely crude
approximation, especially for the justification of
minimal basis-set calculations.

THE S-EXPANSION TECHNIQUE

For an analytical study of the transformation
of one-electron operators (1) and of the repulsion
integrals (4), Brown and Roby [3] represented the
matrix function A™"2 by the binomial expansion,
truncated to the first or to the second order:

- - o (-1,
A2 =1+ 912 = §=: Sy S
—1- 25+ 328+0(). (5)
. 2 8 J
Aif

This power series converges under the precondition
o) Cc]-1,1[

to the spectrum of S. Brown and Roby disregarded
this precondition. This was criticized by Gray and
Stone [9], who gave the example of the overlap
matrix of the methane molecule with S having an
eigenvalue of about 1.38417. The results of Brown
and Roby concerning the justification of NDDO were
revised by Chandler and Grader, [4] who gave a
formally convergent power series expansion.

THE P-EXPANSION TECHNIQUE
For the matrix P given by Chandler and Grader,

1

BT
with

max|o(8)] + min ¢ (S)
X = 2 .

o(P) C ]-1,1[ holds and thus the binomial expan-
sion in P converges:

A—l/Z = (____)1,2(1 + P)—ll2
1+ x

1 12 1 3 ) 3
_<l+x) [1—5p+§p +0(P)]

By transformation of one-electron integrals follow-
ing (1) and electron repulsion integrals according to
(4) to the second order in P, Chandler and Grader
showed that

* Matrix elements of one-electron operators
(core integrals) cannot be neglected.

* NDDO can only be justified for selected types
of the repulsion integrals (cf. [4]).

But Chandler and Grader’s approach can also be
criticized: In the second article of this series, it will
be shown that a polynomial expansion in P to the
second degree,

12
AP = (—1—) [1 S ilﬂ],

1 +x 2 8
often shows greater errors than the expansion
- 1 3
Apg? =1 - S8+ Es2

according to Brown and Roby. (A second-order
expansion of A™12 is the best, which can be used
for the transformation of one- and two-electron
integrals to the symmetrically orthogonalized basis.
Third-order expansions result in much too compli-
cated formulas and the errors introduced by several
integral approximations become too great. These
aspects will be discussed in Parts IV and V.)

Guide for a New Approach to
the Justification of NDDO

It is the purpose of this series of articles to
introduce a new technique, the I'-expansion, for an
optimal approximation of A~2 using orthogonal
polynomials. The starting point of this approach
was the insufficient convergence of the second-
order expansion in P. The I'-expansion will be
introduced in Part IL In the third article, a spec-
tral property of the overlap matrix of diatomic
molecules assuming local orthogonality of the basis
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functions will be proved. Using these propertivs,
one can see that difterent espansion technigques
becore identical. Moreover, they will be usetul for
the following study of the integral transformations.

The fourth article is a rexamination of the jus-
tification of NDDO using the optimized expansion
technigues. The angumentation follows the ideas
both of Brown and Roby and of Chandler and
Grader.

In the last article of this series, an attempt to
eliminate a central weakness of all formerly pro-
posed justifications of NDO methods will be im-
plemented for the given approach: Several types
of approximations have been used, but control
over the introduced error is only insufficient. For
all types of approximations, rigorously analytic
formulas for the caused error will be given. Nu-
merical evaluations in the simple case of diatomic
molecules allow critical judgment on the value of
the general approximation method and on the pro-

pesed coneept of a nonempirical quantum chemical
computation method founded upen the Neglect of
Diatomic Difterential Overlap approzimation.
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ABSTRACT

Several attempis to justify the Neglect of Diatomic Differential Overlap (NDDO)
approximation in terms of a power series expansion for A™2 (A is the overlap

matrix) have been made (cf. Part I). The new approach for attaining an optimal
approximation of A™'? represented here transfers the problem of finding an optimal
matrix polynomial to an approximation problem of real functions within the spectrum
of A. Best approximations are derived by use of Legendre and Chebyshev polynomials.

© 1995 John Wiley & Sons, Inc.

Introduction

T he Neglect of Diatomic Differential Over-
lap (NDDO) approximation can be justified
partially by techniques based upon power series
expansions for A~"2, where A is the overlap ma-
trix. This argumentation relies on an approximative
transformation of the one-electron integrals and
the electron repulsion integrals into the symmet-
rically orthogonalized basis (Lowdin basis) [1].
The fundamentals of these expansion techniques
have been represented in the first paper of this

series. Let us summarize the S-expansion technique
of Brown and Roby [2] and the P-expansion of
Chandler and Grader. Brown and Roby expand
the matrix function A~"2 by a binomial expansion
inS=A-1

- - = (=1)i2i)!
A2 = (X +8) 12 _ z(:) (221')(,'(!);)

=

1 3
ZS+ 8

P
ABR

Si

=] —

—

$2+0(8%). (1)
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Brown and Roby only made use of the polyno-
mial expansion A%”? to the second degree. They
disregarded the radius of convergence of bino-
mial expansion. By the spectral mapping theorem
[3], this power series converges for a(A) C 10,2[
or, equivalently, o(S) C 1-1,1[. o(A) denotes the
spectrum of the matrix A. This imperfection was
criticized by Gray and Stone [4] in the discussion of
the overlap matrix of methane molecule. Chandler
and Grader [5] developed a formally convergent
expansion in P:

1
P= 1+ x 8 = X),
with
_ max|o(S)| + min o(S)
5 .

For this P, it holds that o(P) C ]-1,1[ and, thus,
the binomial expansion in P converges:

=12 1 12 =12
A = m I+p
1 12 1 3
= I - = + — 2 + 3 il-
(1 + x) [ 2 P 8 P o)

But the polynomial expansion to second degree,

12
P 1 1 3 2}
= I-—P+ —P°|,
Acg <1+x> [ 2 8

converges often worse than does the binomial ex-
pansion to the second degree:

1 3w

> S + 2 S-.

Numerical results are tabulated in the section Nu-
merical Study.

In this article, we describe a new technique, the
T'-expansion, for an optimal approximation of A~!2
to the second order within the spectral interval
conv(o(A)), i.e, the convex hull of the spectrum
of the overlap matrix A. Instead of fixed bino-
mial expansion coefficients, optimized polynomial
expansions are derived in terms of Legendre and
Chebyshev polynomials.

-2, _ _
INNCEE

The I' Expansion Technique

MOTIVATION

The proceeding is motivated by the spectral
mapping theorem that can be simply formulated

for the positive definite symmetric matrix A. Under
the given assumptions, we have an orthogonal
matrix U that diagonalizes A:

AL 0
U'AU = A Ea(A).
0 /\N
All eigenvalues are strictly positive, so that we can
formulate the matrix function A~12 by

At 0
A2 =y . U

0 A

Now, we look for a polynomial approximation

p(x) = X a;x' of degree n for A~12:;
i=0

A2 = ZaiAi +0(A"+1).
i=0

= A2
- Aapprox

The error d of this approximation can be measured
in an appropriate norm:

d= A2 - A-12 |

approx
A= p) 0
=g U'|f.
0 W = pw)
If one chooses unitarily invariant norms, one has

A7 — p(a)ll,

= Arénga)l)rl’z - pWI forg=2

=  max V2 — p(x)| forgq=F.
x€Econv(c(A)) b P( )l 1
Proofs are given by Golub and van Loan [6].
Herein, g = 2 denotes the spectral norm that reads
for a Hermitian matrix B:

IBll, = max [Al,
AEc(B)

and g = F denotes the Frobenius norm of a matrix
B € RM:

B 12

1Bl = (Z 2 (bi,)2> :

i=1 j=1

The convex hull of the spectrum of A is given by
conv(o(A)). Therewith, optimal approximations of
the matrix function can be found by the solution of
the real approximation problem, i.e., by minimizing
the deviation of the polynomial p from the function
f(x) = x™2 on the specified set.
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NEGLECT OF DIATOMIC DIFFERENTIAL OVERLAP. I

INDUCTIVE APPROACH

The given approximation problem should first
be solved for a polynomial of second degree; only
such a polynomial is used for the integral transfor-
mations in Part IV.

Let f(x) = x~'2 be defined on the convex hull
of the spectrum of the overlap matrix

conv o(A) = [5,t] with 0 < s = min o(A) < ¢
= max o(A), (2)

and p(x) = @ + bx + &x?, a polynomial of second
degree. Suppose for the following that s # ¢ and,
therefore, A # 1. The distance of both functions in
La[s,t] with the [|-ll; norm [3] is given by

1@,5,8) = |lx™*2 — p()Ii3
t
= f (72— @ + bx + &x))?dx.

The |||l norm on the function space Laf[s, ¢] should
not be confused with the equally denoted spectral
norm of the space of matrices. Developing A2 in

A=A - «l,

instead of an expansion in A, we can also minimize
a truncation error that results from expanding one-
electron operators over the symmetrically orthog-
onalized basis to the second degree. This can be
done by an optimization of the real parameter «.
Thus, it holds that

t
1(6,b,8) = f (x™V2 — (@ + bx + &x}))%dx
5
t—x

= f_ ((z + k)" — (@ + bz + k)

+ & + x)?)%dz

t~K
= f (@ + k)72 — (@ + b + &k?)

Ay
2
b+28)z+ ¢ 2%
+ (b + 28k)z ¢ 9| dz

by Ce

=: J(@yx, bic, Cic) . (3)

The solution of the minimization problem can be
determined elementarily by integration of (3). The
partial derivatives of J after ay, b, and c, lead to
a system of linear equations with the symmetric
Hessian A of J(ay, by, k). A is regular, because
det(A) = (1/270)(+ — 5)° > 0. All other principal

minors are also greater than zero. Thus, A is pos-
itive definite and the minimization problem has a
unique solution (regularity), which is a minimum
(positive definiteness). The coefficients read

ae =2(s — 1)7[—372 + 9512

+ 1" (~12s + 8k) + £ (2457 — 365"%k)

+ £7(~48s% + 685k — 67)

+ (4857% — 805« + 305%?)

+ 132(~2453 + 80s%k — 60sx?)

+ 1(125™ — 68552k + 605°%k?)

+ t"2(—9s* + 3657k — 305%k?)

+ 3572 — 857k + 6572k%]; 4)
b = 8(s — 1)7°[2t™ — 95243 + 52175 - 3k)

+ 2(=205>% + 155%k) + 22(205* — 30sk)

+ 1(=175"% + 30532 k) + 1"2(95> — 155%k)

— 2572 + 357, (5)
ce = 12(t12 + §12)73, (6)

The optimal approximation (in the sense of the L,
norm) is now

A2 = ad + b A, + c (A +0((A)).

iy
-1
Aapprox

We call the second-order approximation A;¥2 1t
can be seen that this second-order approximation
is independent of x (a., b., and ¢, have to be
calculated for each k).

Now, the influence of « on the transformation
of integrals should be studied. Let M be the ma-
trix representation of a one-electron operator that
is now to be transformed into the symmetrically
orthogonalized basis. We choose a second-order
expansion, too:

AM = A-12MA-IR2
= (a + b A, + ¢ (A
X MacI + bl + cc(A)?) + 0(AL)?)
= a’M + a, b (MA, + A M)
+ a,.c (MA2 + A2M) + b2A, MA,
+ {JKCK(AKMA%( + AXMA,) + c,Z(AiMAiJ
= D(x)

+ 0((A))

= a:M + ab(MA, + AM)
+ acc (MAZ + A2M) + b2A MA,
+ 0((AL)).
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All terms of third- and fourth-order are collected in
D(k), which is the additional truncation error, if we
start from a second-order approximation for A~12
and even develop *M to second order.

This error can now be studied in a suitable norm:
We choose the spectral norm, which has been given
above for a Hermitian square matrix B:

IBll; = max(lo(B)]) = r(B),

with the spectral radius r of B.

All studied matrices are Hermitian. By the con-
tinuity of matrix operators and by the triangle
inequality, it follows that

D)2 = ”bKCK(AKM(AK)Z + (AK)ZMAK)
+ (CK)Z(AK)zM(AK)Zlh
< 20becil 1AMl
+ (e )* A3 lIMll
= [IMIL2lb.cil 1ALl
+ (ALl =:d. )
The upper limit d can now be lowered by min-
imizing the spectral norm of A,. The coefficient
¢« and ||[MJl, are independent of x and observe
the third and fourth power for ||A4|l; in d. Thus,
minimizing lA.ll, is a good approximation to re-
duce d. Starting from a second-order expansion for
A, one has to neglect terms of third to eighth
order while calculating a second-order representa-
tion of two-electron integrals in the symmetrically

orthogonalized basis.
By definition of A,, we have

HAll, : = max(|o(A — «T)|)
= max(ls — «|, |t — «|),

which is minimized in xpin:

- L+ s
min * 2 .
The matrix A, , is of special importance in the
following:
t+s
=A,, =A4- I.
F A min 2
Its spectral norm reads
t—s
It =) = —=0. @

This inductive approach yields that

o A2 s to be expanded in

s+t

r=4a-=

I.

I' has the smallest spectral norm concerning
the considered variation.

» The expansion coefficients for a second order-
polynomial,
A7 =gl + bT + cI? + OT®), (9)

are given by [from Eqs. (4)—(6)]

1 2 gl2\2
=?‘T’“T[2_(T/—+—/) } (10)
b= "4(1‘1/2 + s1/2)-3 (11)
c = 120" + 5s'2)75, (12)

DEDUCTIVE APPROACH

A general solution of the approximation problem
using Legendre and Chebyshev orthogonal poly-
nomials can now be developed. This leads to a
compact description of the coefficients for polyno-
mials of any degree. We make use of the results
of the last section and formulate an expansion in
I' directly.

Legendre Approximation

Legendre polynomials P, are a set of orthogonal
functions in C[—1,1]:
1 4, "
o (@ =1, (1)

which fulfill the orthogonality relation

VnEN Pux)=

1
(Pnlpm) = f—l Pn(x)Pm(x)dx = -Zn—'*'l Onm +

We like to use orthonormalized Legendre polyno-
mials

Legendre approximation is a generalization of
the inductive approach in the last section, be-
cause the polynomials result from a Schmidt-
orthogonalization procedure of the monomials x' in
C[—1,1] by the represented scalar product. Thus,
we have

«xo,xl,“.’xk» = «POsPls"'9Pk>>'

{(-)) denotes the generated linear space. For an
approximation of second degree, we expect the
same result as given in (10)-(12).
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Starting now with the linear mapping 7 (a bijec-
tion for o # 0),

r:[-1,1] — [5,t]: x = x0 + Kpin,

with kp, = (¢ + 5)/2 and o = (¢t — s5)/2 succeeds
a representation of the approximation problem of
F(x) = x7Y2 on C[—1,1], because it is

form[-1,1] — Rix~ f o7(x),
with
for(x) =20 —s) + (¢ + )2

The condition s # 7, i.e.,, A # I, must be always
fulfilled.

For the expansion coefficients of the orthogonal
Legendre expansion, it holds that V » € N U {0}

a, = (f o7|Py(x))
1
o T 1 f_l Gt — ) + (¢ + 9)"V2P,(x) dx

23/2 (t1/2 — sl/2)2n+1

B A A T T

For the proof of the last identity, see Appendix A.
The approximation S, of degree k for f o7 on
C[-1,1] reads

k
Se:[-1,1] — Rix - Z anP,(x)

n=0
Vx€e[-1,1] for(x) =S + 0@, (15

—12

For an expansion of A™"* in I' over the convex

hull of the spectrum o(A),
conv(e(I)) = [~o, ],

a composition of §; with the linear mapping 7 is
needed:

x
n:[—o,0] — [-1,1: x — p (16)

k
N
Sgon:[—0o,0] — Rix— ;::0 a,,P,,(;).
(17)
For all x € [—o, o), it holds that

foronx) =S onlx) + 0k

k
= a,,IS,,(—x—) + O(x**1).,
=0 g

n

The expansion for A™12

in I reads

in Legendre polynomials

k

AT =Y P() + ok,
n=0

Substitution of the explicit form of Legendre
polynomials [9],

N AV Y YA
Pas) =2 ;JAV@)( W e,

in (17) leads to

2n +1
2

[nf2] n—2l
2n — 21\ [ x
<2 () )G
I;) (=1) (l n o
We like to calculate now the coefficients ¢, (k) of
Sk e ﬂ(x);

k
Sy on(x) = a, 27
n=0

k
S o nx) = D cnlk)x™, (18)

m=0

by permutation of the sums. As shown in
Appendix A for the coefficients co(k),...,ci(k)
of a polynomial of degree k, it holds that

2 [(k"m)/2]
(t — s)m(r 12 + s12) =
v (t“z - s1/2)2"+'"4_n(2n + Zm)(n + 2m)
112 + gli2 n n+m/
(19)

These coefficients are used for the transformation
of quantum chemical integrals. For a I expansion
of the k-th degree for A~!2, this yields

cm(k) = (=nm*n

k
A2 =N ¢, I™ + o). (20)
m=0
The coefficients ¢, (k) for k = 0,...,3 read explicitly
as follows:

k=20

co(0) = 2(*2 + s"2)1,

This result for an expansion of degree zero is
interesting, because the integral transformation
changes to an integral-scaling as proposed by
Chandrasekhar et al. [7]. As we will see in Part V,
an expansion of zeroth degree is of no practical
importance.
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k=1:
co(l) = 2(t”2 + s1/2)—1
(1) = =42 + 51772,
k=2
a2) = (1 2y-1f 5 _ 12 — i\?
0 12+ g1y [2 (tmﬂm) } (21)
c1(2) = —4(t"* + 1173 (22)
c2(2) = 12(12 + 512)73, (23)

This result is equivalent to Egs. (10)-(12).

k =3:

2 gl 2
co = 0+ g2 (ST
1
(t — 5)(t12 + s12)

12 . AR 12 _ 1243
<[ rm) ) |
2 4 il R RRENY)
c2(3) = 12(:% + §V2)73
c3(3) = — 40" + )77,

ci1(3) =

Note that the coefficient formula ¢,(k) has two
interesting properties:

e c¢y(k) is invariant under permutation of s
and :

cm(k) (s, 1) = cnlk)(2,5).

» The coefficients fulfill the following identity,
Yi,m&€NU {0k

cw(m + 2i) = cp(m + 20 + 1).

This relation can be illustrated by

0 1 2 3 4 K,
0 co(0) = co(l)  ca(2) = co(3)  co(4)
1 Cq (1) = ¢1(2) Cq (3) = ¢1(4)
2 C2(2) = C2(3)  ca(4)
3 cs(3) = cs(4)
lm

Chebyshev Approximation

An approximation in the Chebyshev polynomi-
als allows a larger error in the quadratic mean,
i.e., the Legendre expansion, but reduces the
extreme error.

For a f € C[a,b], the polynomial that fulfills

,onf | max [f(x) = pOo)l

deg p=k
is called the minimax-polynomial (L. approxima-
tion). It has the smallest maximal deviation from
the function f(x) among all polynomials of degree
k. This minimax-polynomial is difficult to find; an
approximation in Chebyshev polynomials is almost
identical and is easy to compute [8].

Especially at the boundaries of the interval [a, b],
the approximation is somewhat better than in the
case of Legendre approximation; compare Figures 1
and 2.

The Chebyshev polynomials of type I T, repre-
sent an orthogonal set on C[—1,1] with respect to
the weighted scalar product:

fg€ C[_l’ 1]
1
(F19)= [ s = A
They are defined by
n € NU{0} T,(x):= cos(n arccos x)

and fulfill [9]
1
f Tw(X)Tw(x) (1 — x*) 2 gy =
-1
0 : m#n
7/2 . m=n#0
T : m=n=0.

For a function g € C[—1,1], the expansion coeffi-
cients are determined by

1
o= 7r(1—-|2-—;so—) j_l g(O)T,(x) (1 — x¥)™ Y2 gy,

By deg T,, = n, we obtain the Chebyshev approxi-
mation as a polynomial of degree k by

k
q(x) = Y a,T,(x).
n=0

Similar to the Legendre approximation, we trans-
form the approximation of f(x) = x ™2 on C[-1,1]
by the linear mapping

t+ s
2 H
with o = (t — 5)/2 and the assumption s # ¢. It
follows then that
t+ s)'l/2

for(x)=(xcr+ 5
= V2[x(t = ) + 1 + 577172,

7. [-1,1] — [s,t]: x > x0 +

524

VOL. 53, NO. 5
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which can be expanded in Chebyshev polynomials.

23/2
ap, = m (x(t s)+t+ S)_UZT,I(X)
X (1 — x*)~12 dx
_ 0312 L @i-nn
Cow(l+ S W T s & Z( ) @i
t=s\ (™
X (m) f (cos y)* cos(ny)dy. (24)

The last identity is proved in Appendix A.

For the transformation of one- and two-electron
integrals in Part IV, we need only a polynomial
approximation of second degree; hence, we restrict
our discussion for the a, on the cases n = 0,1,2:

n=20:

Integration by parts leads to

f i (cos y)' cos(ny) dy = [ " (cos y)' dy
0

(’:1) 7 + 1) mod 2), (25)

using the definition

-2

for uneven i € N
foreveni €N

and convention (—1)!! = O!! = 1.
From substitution of (25) in (24) it follows that

V2 (4i — DI (28 — DN a
4= t+sZ @n @i (r+s)'

=0

(26)
n=1
Using (25), we have
4 ; L _
fo (cos y)' cos(ny)dy = T+ (i mod 2)
and
B 232 & (4i + DN (20 + DN
4 N (4z+2 (2i + 2)!!
t—s 2l+1
X .
(t =) @)
n=2

Analogously, it follows that

(, - DI
( + U
X ar((i + 1) mod 2);

f (cos y)' cos(2y) dy

hence, we have

(4i — DI Qi = DN [t — s\¥
t + 5 Zo @)Hn i + 21 ’(t n s) :

(28)

For the approximation of second-degree S, for f o
7, it follows that

Sy [-1,1] — Rix > aqyTo + a;T; + a3T,.
Composition with 7 leads to
S on: [~o,0] — R:
X aoTo( ) + alTI( ) + asz(i)
andVx €[-o,0]

foron()==5on(x) + 0K

~ata(Z) +ald(2) 1)

+ 0%
2
=ay —ap+ A+ i;xz
o o
a Hr_l H,_J
b c
+ O(xs).

The coefficients for a second-order expansion in I
have the form

a=a — a (29)
b=a/o= (tzfls) (30)
¢ =2ajo = G 8_azs)2 ; (31)

and the approximation reads

A7V = g1 + bT + cI? + O(I).

For a numerical evaluation of the series (26)—(28),
we like to given some error estimations. For

V2 S @i =@ - s\
=T Z @ @ )(t+s) ‘
a
it holds that 0 < g; = 1. As shown in Appendix A
for a=[(t—s)/(t +s)] we have 0<ea <1
Further,

’h — (1 + 1/i)2 j—o0 1:

EN CHI
(1+4 1+4l
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hence, for an expansion of M-th order (M € N),

A0, approx = m Z qic Y

and an error ry = |ag — ao,,,,,pmx_l, the series is lim-
ited by a geometric series:

i V2 i 2
=M+ ‘\/mi=M+l
(Z Z“)
= i=0
Go[ 11—
=\/m<l—a2_ 1- a? )
2 a2(M+1)<
_ﬁl—az_e'

With e as an upper limit for the error the expansion
order My € N, it follows that

21r1la|:lne+ln<(1 - a?) t\/-_;s>]— 1.

Analogously, the error estimation for a; yields

1 »n Vit S
My = 21na[lne+ln((1 a )23/2(t—s)>}
-1,

My =

and for ap,

1 nVEtS
Mzzm[lne+ln((l—a) o7 )}-—1.

As an example, we take the methane molecule as
discussed in the Section on Numerical Study with
€ = 1077, 5 =~ 0.2068 and ¢ =~ 2.3842, which yields

M0=47 M1=50 M2=46.

Hence, the series converge sufficiently.

Numerical Approximation of the Minimax
Polynomial

Now let us consider a numerical approximation
of the minimax polynomial g of second degree, that
is defined (on the finite set ¢o"(A)) by

inf | max If()t) = pIl = max [f(A) = g

AEa(A)

pER[x] AEQ
deg p=2

All results are reported in the section Numerical
Study; for the calculations, a routine of the Nu-
merical Algorithm Group (NAG) [10] was used. The
algorithm was described by Stiefel [11].

Numerical Study

The expansion techniques of Brown and Roby,
Chandler and Grader, and the here-developed
methods should be compared. For this purpose,
we provide four different examples of overlap
matrices listed in Appendix B.

1. Methane:

This example was used by Gray and Stone [4]
to criticize the S-expansion of Brown and
Roby [2]. The greatest eigenvalue of this
overlap matrix of valence orbitals reads
t =~ 2.3842. The binomial expansion is non-
convergent.

2. Nitrogen:

Chandler and Grader [5] gave this example
(only valence orbitals). For this diatornic
molecule, we have s + ¢t =2 and ¢(A) C
10, 2[. These relations will be proved generally
for diatomic molecules under the assumption
of locally orthogonalized basis functions in
Part III of this series. By o(A) C ]0,2[, the
binomial expansion converges formally, but
the speed of convergence is insufficient. The
Legendre and Chebyshev expansions provide
more accurate results.

3. Hydrogen fluoride:

This example is given by Pople and
Beveridge [12]. Additionally, the orbitals at
the fluorine atom are locally orthogonalized.

4. Formaldehyde:

The overlap matrix is given by Cook [13]. The
greatest eigenvalue reads ¢ ~ 2.1068.

APPROXIMATIONS TO A~/

The graph of the function f(x) = x~12 and the
different approximations on the convex hull of the
spectrum [s,7] = conv o(A) of the overlap matrix
are shown in Figures 1 and 2. In Figure 1, it can
be seen that the binomial expansion truncated to
the second degree is a poor approximation to x V2
in the interval [s,]. The Legendre approximation
yields a more accurate result. The Legendre and
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Approximations of reciprocal square root

Example: Melhane
s - 0.20663 t - 2,308417

Functlon x~/2

........ Legendre approximation; 0tx31

———~ Binontal expansion of x~172; 0(x})

L
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FIGURE 1. Graphs of the functions x~"2 (solid line), of binomial expansion (broken line), and of Legendre approximation
(dotted line) for the overlap matrix of methane (cf. Numerical Study) with the smallest eigennvalue s ~ 0.20683 and the

greatest eigenvalue t =~ 2.38417 (vertical broken lines).

Chebyshev approximation and the minimax poly-
nomial are compared in Figure 2. The Chebyshev
approximation and the minimax polynomial pro-
vide and improved approximation, especially in the
boundary points of the interval, whereas the Le-

gendre expansion yields best results in the middle
of the interval.

For a comparison of the approximations to
the matrix function A™2, we consider matrix
polynomials of second degree, which are formally

Approximatlons of reciprocal square root

Example:  Methane
s = 0.20663 t = 2.38417

Function x~1/2

........ Legendre spproximation; Oix3)
===« Chebychev approximation; 0(x?)
Minimax-polynomial of the second degree on of4)

TTTUTRTEIv T ITTT

z

gL
kg

—
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o
(-3
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FIGURE 2. Comparison of different approximations.
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given by
B =al + bA + cA? + 0O(AY), (32)
with the already defined quantities
S=A-1

P=01+x)"1S —=xI)

with x = [max|a(S)| + min &(S)]/2
s+t I

2

with 5 = min o(A),

r=A-

t = max o(A).
Let us now define the following matrices:

1. Truncated binomial expansion of Brown and
Roby:

Ag%=1—%s+%§.

2. Modified truncated binomial expansion of
Chandler and Grader:

172
%?F(J—)P—1P+3W]

1+ x 2 8
3. A-expansion with Legendre coefficients ac-
cording to (4)—(6) for Kmin = O

Azgézendre,A =al + bA + CAZ.

4. S-expansion with Legendre coefficients ac-
cording to (4)-(6) for kmin = 1:

AZ:,Z,M,E,S = aql + bS + ¢S

5. I'-expansion with Legendre coefficients ac-
cording to (21)—(23):

ALsvonare,r = al + 0T + T2,

6. I'-expansion with Chebyshev coefficients ac-
cording to (29)—(31):

AZ'}llizzbychev,F =al + b + I

7. I'-expansion using minimax polynomial of
the section Numerical Approximation of the
Minimax Polynomial:

A;ﬁf,z,-max,p = ql + b + cI'2

In definitions 4-7, we employ the same
symbols a, b, and ¢ for the expansion coefficients.
They have to be calculated by the specified
formula in each case. The quality of the different
approximations will be rated in the Frobenius
norm given above:

d:= ”A—1/2 _ A—1/2 ”F

approx

N 1”2
= ( Z (R T (A;,ifm,,)if) .

ij=1
A ratio of norms is defined as follows:

g =d/lA™"?]p.

(For g = 0, one has the best possible approximation
A2 = AZ)2 , whereas for g =1, the approxi-
mation is useless; e.g, A" =0,) Table I shows
a comparison of the different approximations
for A™2,

It can be seen that for diatomic molecules the
expansion techniques 1 and 2 give the same re-
sult. For a proof, confer Part III (Corollary 3) of
this series. For methane and formaldehyde, the
P-expansion gets less accurate resuits than does
the expansion of Brown and Roby, whereas the Le-
gendre expansion in A, S, and I" produces identical
results. But comparing this with the approximation
of Brown and Roby, we obtain norms, which are
smaller by a factor of 2—3. The Chebyshev expan-
sion and the minimax polynomial provide the best
approximations of A~!2,

APPROXIMATIONS TO A™*

In the section Inductive Approach, the expansion
in ' was justified by minimizing an additional
truncation error while developing *M. Both A~
and *M are expanded to the second order. For a
numerical illustration, let us select M = I:

AI — A—IIZIA—I/Z — A—l.
Using the formal expansion (32), this leads to
B? = a’1 + 2abA + (2ac + b)A? + O(AY). (33)

Hence, we have the following:

1. Truncated binomial expansion of Brown and
Roby:

Ajli=1-8+8§2
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TABLE |
Comparison of different polynomial approximations to A~"2,
CH, HF (local orthogonalization) N, (local orthogonalization) CH:0

Brown and Roby

d 0.7896 0.1172 0.7017 0.7459

q 0.1959 4.4569 - 1072 0.1989 0.1681
Chandler and Grader

d 0.9361 0.1172 0.7017 0.8473

q 0.2322 4.4568 - 1072 0.1989 0.1909
Legendre, A

d 0.3892 5.0009 - 10~2 0.3681 0.3665

q 9.655 - 1072 1.9009 - 1072 0.1043 8.2587 - 102
Legendre, S

d 0.3892 5.0009 - 1072 0.3681 0.3665

q 9.655 - 1072 1.9009 - 102 0.1043 8.2587 - 1072
Legendre, T

d 0.3892 5.0009 - 1072 0.3681 0.3665

g 9.655 - 1072 1.9009 - 1072 0.1043 8.2587 - 1072
Chebyshev, T’

d 0.2935 3.2892 - 1072 0.2856 0.2623

q 7.2806 - 1.2502 - 1072 8.0943 - 1072 59101 - 102
Minimax, T 102

d 0.3584 7.8364 - 10776 0.2414 0.2547

q 8.892 - 1072 2.9787 - 1076 6.8418 - 1072 57395 - 1072

2. Modified truncated binomial expansion of
Chandler and Grader:

_ 1
Acé = m[l -P+ Pz].

3. A-expansion (Legendre):
AL pondre,s = @21 + 2abA + (2ac + bP)AZ,

4. S-expansion (Legendre):

A;;ge,,d,e,S = a’I + 2abS + (2ac + bHS2.

5. T'-expansion (Legendre):

AZ:ge,,d,e,p := a*1 + 2abT + (2ac + BHI.

6. I'-expansion (Chebyshev):
AE},ebyshev,r = a*I + 2abT" + (2ac + b2

7. I'-expansion (minimax-polynomial on o(I')):
Aifnimanr i= @*1 + 2abT + (2ac + AT

Numerical results are shown in Table II. As dis-
cussed in the section Inductive Approach, the Le-
gendre expansion in A is a poor approximation.
The best one is that in the minimax polynomial of
second degree.

APPROXIMATIONS OF ry, 4

Using the charge density matrix, one can expand
the electron repulsion integrals to the second order.
Starting with a second-order expansion for A™'2,
truncation errors from third- to eighth-order arise.

The charge density matrix @ in the basis
¢i=1,..n is represented by (for a detailed descrip-
tion see Part IV)
b1 ... Dby
e=| : :
ond1 ... dndw

AQ — A—-IIZQA-—-IIZ
1
A pop - AQ (1) ——— A, (2
Gidi1 100 = [ 40500 27 "0
X dridr,.

A formally analogous, real quantity riju can be
defined by (assuming constant functions ¢; with
pairwise disjoint supports)

Q=1

'\Q e A—IIZQA—-I/Z = A—l
and
=10, 0y
(A5 A Dy

Tij ki -
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TABLE Il
Comparison of approximations to A",
CH, HF (local orthogonalization) N; (local orthogonalization) CH,0

Brown and Roby

d 3.0629 0.4194 3.0753 3.0055

q 0.4261 0.1353 0.4974 0.4074
Chandler and Grader

d 3.5679 0.4194 3.0753 3.3425

q 0.4964 0.1353 0.4974 0.4531
Legendre, A

d 11.7414 4.7759 14.4240 13.2015

g 1.6336 1.5405 2.3331 1.7690
Legendre, S

d 2.1522 0.2717 22774 2.053

q 0.2994 8.7632 - 1072 0.3684 0.2784
Legendre, T

d 2.4192 0.2717 2.2774 2.2752

q 0.3366 8.7632 - 102 0.3684 0.3084
Chebyshev, T’

d 2.0633 0.2338 2.0265 1.9432

q 0.2871 7.5408 - 1072 0.3278 0.2634
Minimax, I’

d 2.0035 0.1595 1.7772 1.6905

g 0.2787 5.1456 - 1072 0.2875 0.2292

With Eq. (33), it follows that
N

(A_I),'j = a28,-j + 2abA,-j + (2(16 + bz) Z AiBABj
p=1

+ 0(A3)

and r;; y reads

= 2| 2
Tijkl = a |ia 0;j6u + 6y

N
X (ZabAk, + Qac + by Y AkyA.,,)
y=1

+ 4b%AijAw + Su

N
X <2abA,-j + (2ac + bz) Z A[-yA»yj)}

y=1
+ 0(AY).

The approximations to the second degree can now
be computed:

1. Truncated binomial expansion of Brown and
Roby:
A=Sanda=1b=~1/2,c=3/8

2. Modified truncated binomial expansion of
Chandler and Grader:

A=Panda=1b=-1/2, ¢ = 3/8. Addi-
tional coefficient [1/(1 + x)?].

3. I'-expansion (Legendre):
A=T and g, b, and ¢ are the Legendre
coefficients for a I'-expansion.

4. I'-expansion (Chebyshev):
A =T and @, b, and ¢ are the Chebyshev
coefficients for a I'-expansion.

5. T'-expansion (minimax-polynomial on o (I')):
A =T and g, b, and ¢ are the coefficients of

the minimax polynomial for a I'-expansion on
a(I).

Numerical results are shown in Table III. For this
“real analog” of repulsion integrals, let us quantify
the quality of approximation by an analog to the
Frobenius norm:

d:=|r- rapprax."l"

N 112
rox.
=< Z (f'ij,kl—"fj{)/fl )2> .
i’j1

k,1=1

The quotient of norms reads

g =d/llrllr.
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TABLE lll
Comparison of approximations to ry, i.
CH, HF (local orthogonalization) N, (local orthogonalization) CH0
Brown and Roby
d 36.0702 2.4835 28.9068 36.7080
q 0.6982 0.2584 0.7563 0.6746
Chandler and Grader
d 40.7779 2.4835 28.9068 39.6786
q 0.7893 0.2584 0.7563 0.7292
’ Legendre, T
d 36.1400 1.0828 26.0439 34.6996
: q 0.6995 0.2063 0.6814 0.6377
* Chebyshev, T
d 34.7807 1.8637 25.2896 33.3098
q 0.6732 0.1939 0.6617 0.6122
Minimax, T’
d 35.8321 1.5789 24.1084 32.2317
q 0.6936 0.1643 0.6308 0.5924
Using the Chebyshev approximation leads to
Summary

Various expansions have been developed for
an optimal approximation of A™!2 to the second
degree in L; and L. norm. The coefficients of
the polynomials depend on the quantum chemical
problem by the spectrum of the overlap matrix.
In comparison with binomial expansion, we have
detected considerable improvement. The numerical
realization is easy, because the “optimized coeffi-
cients” have to be calculated only once. They are
used instead of fixed binomial coefficients. The
I'-expansion technique represents a new solution
of the convergence problem of the S-expansion
technique [4,5]; the last one was used for the jus-
tification of NDO methods in the symmetrically
orthogonalized basis.

A summary of the expansion to the second
degree reads

A2 — a1 4+ b + cI?

approx.

s+t

F=A- I with s = min o(4A),
t = max o(A).

Legendre approximation yields

2
a=@" + sllZ)—l[Z _ (tm - Sm) }

S RNST)
b= —4(\2 + §/2)-3

c = 12(t1/2 + sl/l)—S

a= ay — a

_ 2a1
T (t—s)
_ 802
(=R
with
V2 @i — DN @i — DN —s\*
= s ZO @ @ (z + s>
o — (4 + DI (2 + 1)"( s)2i+1
! Vits 5 @i+ @i+ 21\t +s

- @i —DN Qi -DY [t-s\
“=T Z @ (i +2)!!l(t+ s)

We further see that the P-expansion of Chandler
and Grader does not bring any improvement in the
examples discussed. In the following articles, we
make use only of polynomial approximations of
the second degree without specifying with which
method the coefficients a, b, and ¢ are to be com-
puted. For some analytical studies in Part IV, we
prefer Legendre coefficients because of their concise
representation. For numerical computations (see
Part V), we utilize the Chebyshev coefficients.
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Appendix A: Approximation by
Orthogonal Polynomials

Some assertions that we have made for the
derivation of the Legendre and the Chebyshev
expansions, are to be proved here.

Lemma: In Eq. (14), it was assumed that

9312 (t1/2
—— (= 1)
n+om Y T T

Proof: The Legendre polynomials may be defined
by the generating function [14]

— sl/2)2n+1
a, =

(1 —2xr + 72712 = Z Pex)rk for |r|<1.
k=0
Then, from the orthogonality of Legendre func-

tions,

1 [ve]
f (1 —2xr + r®)12p, =
-1 k=0

)P, (x)dx = D (Py| Py)rt

_ 1 fl 1
CaQ+me ) (1 _ )

B 1 /1 1
1+ e ( 2yr ) "
2

B el f : 1
T+ (1 . Ixr )1/2 P,(x)dx.
1+ r2

The last step is valid with regard to the symmetry
property of Legendre polynomials:

VriEN Py—x)=(—-1)"P,(x).

Hence, we have

! Pn(x) 2 n.n+l1/2
f—l (1 . 2rx )1,2dx— 2n + 1( '

1+ r2
12
1+ r?
x( = ) . (34

Using the definition of a,, it follows that

1
a, =+2n +1 / Palx) dx

-1 ¢+ s+ (¢ — s5)x)?2

_ V2nt1 P,(x)
7z 4x.
Ji+s ( t—s )
t+s

Now let & = (t — s5)/(t + s) and determine an ap-
propriate r that fulfills
2r t— s
= =a>
1+72 t+s © 0
1++vV1l—a?

(29

—r =

We have thenby t > s >0
t— s
t+s

With respect to the condition r < 1, one obtains

r=1—\/1—a2
a ’

=a € 0,1[. (35)

and with

. (tllz - s1/2)2 >0
(t—s

it follows for even |r| < 1. For the expansion coef-
ficients results with (34),

oo VEEL P
" Jt+s 2n+ 1

12 _ (12y2n+1
2 sh=)

(t — s)n+ie
« (t + s)“2
t—s
_ 232 1 (12 — gl2ym+l .
Qn + 112 (t — syl

In the section Legendre Approximation, we claim
for the coefficients c,,(k) of the monomials the

following:
Lemma:
[n/2]
Se o mx Z )
n -2\ x £
<(", )(";) ,,,Zo calb™

with the coefficients
) [(k—m)12} .
— m-n
t — (12 + 5I7) Z (=1)

n=0

2n+m
y t1/2 — S1/2 4
12 4 s1/2

% (2n +2m)<n+2m>
n n+m)/)’

cmlk) =
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Proof: The proof succeeds by permutation of the
sums. First, the exponent of x, a function of the
summation indices n and I, should be simplified
by introducing a third summation:

n—21
n=2 .. Z X" Sumaim -

m=0

Hence, we have

k 1 [nt2]

Y a2 S -0y(])
n=0 =0

2 - 21 ~ n—2l
( " ) Amn Z X" On-21,m »

m=0

Sk o n(x) =

with the following sequence of sums:

k [n/2] n—21

2. D 2 nim:

n=0 [=0 m=0
The bounds of the inner sums are functions of
the outer indices of summation. The sum over
m shall become the outer sum. This succeeds by
introducing characteristic functions xj, ;) with a =
b ER:
1 : x€la,b]

Xiap) B — {0, 1} x = (0 . else

After transforming the summation array into a cube
in N3,
k [n2] n=21 k

k

Y onn= 2. DX

n=0 =0 m=0 n=0 =0
k
2

Xo,[n271()

X[o, n-21](m)wn ILms

we can permute the sums. In the last step, we
eliminate the characteristic functions by changing
the bounds of the summation:

k

Kok
3 xowa® D xoa-20(m)@n, 1, m
n=0 =0

m=0

It
M=
M=~

X10,in21 (D) X10, n-21(M) @, 1, m

X00,in20 (D X0, n—21(M) @ 1, m

I
= =
M=~ 1
iM~ I~
IM- 1

—_— e~
g
w3
£

il
M=
M?ﬁ'

AX[0,n-21] (m)wn,l. m

3
i
o
E]
i
=3
T
=)

—
—
=
I
3
=
3
&,

I -
M=
M=

wn,l,m .

B
I
o
=
I
B
—~
It
o

Hence, we have

k k [(n—m)2]
Seen@= Ym0 S ayP e
m=0 n=m =

X ( )(2n i 2l)0'21_n6n—21 me
l n ’

The Kronecker function and summation over ! can
now be eliminated. For fixed m, m € [0,k] N N, we
have n € [m,k] N N. By
n—m

2

and by running [ through the set [0,[(n — m)/2]] N
N, it follows that

((n —m+ Dmod 2) =1

. n
—— summation over [/ only for [ =

an—Zl.m =l=l=

- m

((n = m+ 1)mod 2) =0 —— no [-summation

£ mt-—s""k
ngox(Z)nZ;n

X ((n = m + Dmod 2)a,(n + 1/2)12

X 2_"(-—1)[(’1-m)/2](|iﬁ}) <n : m)

2
k
Z ()™,

cm(k) are the coefficients of monomials x™ for an
expansion of degree k. Substitution of a, leads to

It

S o n(x)

k

(t1/2 + sl/Z)-l Z

(2 = s)m bt

X ((n = m + 1)mod 2) (—1)**le=mr2]
2 g1 " n
X —_
A 4 gl sl [n 5 m]
(n + m)
X

By substitution 7i = n — m, the sum can be simpli-
fied further:

Cm(k) =

k=m [(k—m)/2}
> (& + Dmod 2g(R) = > g(2n)
=0 n=0
om+1 [(k=m)i2] .
cn(k) = G — sy(t2 + i) >, (-

n=0

m+
« 2 — g2\ mz_m_Zn(Zn + m>(2n + 2m>
112 + 512 n 2n+m)’
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Using the identity

<2n +2m)<2n + m)_(Zn + 2m><n + 2m>
2n+m n n n+m)/)’

we obtain
) [(k=m)2]
— +
cm(k) = t — (e + 512) Z (=)™
2 — g2\PT  on 4 om
X V2 4 g2 4 n
x (n + 2m>, n
n+m

Finally, we have to prove an identity for the Cheby-
shev coefficients as claimed in the section Cheby-
shev Approximation:

Lemma:
032 1 "
= — _ + -
an 7L+ 50) f_l(x(t §) +t+ 5) T,(x)
X (1 - x2)~12 gy
232 (i — )i

1+60,,«/t+sz(~ )' @i

X (ﬁ) [o (cos y)' cos(ny) dy

Proof: By substitution x = cos(y), we transform the
first line of the assertion in

Using the definition of Chebyshev polynomials
T,(cos y) = cos(n arccos(cos(y)) = cos(ny), it holds
that

9302
n = w(l + 8¢,)
X fﬂ(cos y(t — 5) + t + 5)"2 cos(ny) dy
" 2302
T+ BoVi + s
X [0 " m cos(ny) dy , (36)

with a@ = (t — 5)/(t + s). By Eq. (35), one has @ €
10, 1[. The reciprocal square root can now be repre-
sented by the binomial expansion, which converges
because @ cos y € ]-1,1[:

(@cosy + 1)1 = Z( (2 )” (a cos(y)).

Substituting this in (36) completes the proof. W

Appendix B: Overlap Matrices

The overlap matrices, as used for numerical

_ 232 0 FRPRNY calculations in the section Numerical Study, read
W 7T(1 + 80n) g (COS y(t S) t S) eXpliCitly
_ 2y -12(_ i
X Tp(cos y) (1 — (cos y)*)~"*(—sin y) dy 1. Methane:

1.0000  0.0000  0.0000  0.0000 05239 0.5239  0.5239 0.5239

0.0000  1.0000  0.0000  0.0000 -0.2789 -0.2789  0.2789 0.2789

0.0000  0.0000  1.0000  0.0000  0.3944 —0.3944  0.0000 0.0000

A~ 0.0000  0.0000  0.0000 1.0000  0.0000 0.0000 —0.3944 0.3944

05239 -—-0.2789  0.3944  0.0000 1.0000 0.1970  0.1970 0.1970

05239 —0.2789 -—0.3944  0.0000 0.1970  1.0000  0.1970 0.1970

0.5239 02789  0.0000 —0.3944  0.1970  0.1970  1.0000 0.1970

0.5239 02789  0.0000 0.3944 01970 0.1970  0.1970 1.0000

2. Nitrogen:

1.0000  0.0000 0.0000 0.0000  0.4500  0.4300 0.0000 0.0000

0.0000  1.0000 0.0000 0.0000 -0.4300 -0.3200 0.0000 0.0000

0.0000  0.0000 1.0000 0.0000  0.0000  0.0000 0.2800 0.0000

A~ 0.0000  0.0000 0.0000 1.0000  0.0000  0.0000 0.0000 0.2800

0.4500 —0.4300 0.0000 0.0000  1.0000  0.0000 0.0000 0.0000

0.4300 —0.3200 0.0000 0.0000  0.0000  1.0000 0.0000 0.0000

0.0000  0.0000 0.2800 0.0000  0.0000  0.0000 1.0000 0.0000

0.0000  0.0000 0.0000 0.2800  0.0000  0.0000 0.0000 1.0000
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3. Hydrogen fluoride:

1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000
—0.0590 0.4717 0.2989 0.0000 0.0000

4. Formaldehyde:

—0.0590
04717
0.2989
0.0000
0.0000
1.0000

A =
1.0000  0.2203 0.0000 0.0000 0.0000 0.0000 0.0353 0.0000 -0.0595 0.0000 0.0707 0.0707
0.2203 1.0000 0.0000 0.0000  0.0000 0.0400 0.3749 0.0000 —0.3078 0.0000 0.5367 0.5367
0.0000  0.0000 1.0000 0.0000  0.0000 0.0000 0.0000 0©.2159  0.0000 0.0000  0.0000  0.0000
0.0000  0.0000 0.0000 1.0000  0.0000 0.0683 04594 0.0000 —0.3056 0.0000 —0.2489 -0.2489
0.0000  0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 02159 04311 -04311
0.0000  0.0400 0.0000 0.0683  0.0000 1.0000 0.2333 0.0000 0.0000 0.0000 0.0058 0.0058
0.0353 0.3749 0.0000 0.4594  0.0000 0.2333 1.0000 0.0000  0.0000 0.0000 0.0874 0.0874
0.0000  0.0000 0.2159 0.0000  0.0000 0.0000 0.0000 1.0000  0.0000 0.0000  0.0000  0.0000
—0.0595 —0.3078 0.0000 -—0.3056 0.0000 0.0000 0.0000 0.0000 1.0000  0.0000 -0.0785 -0.0785
0.0000  0.0000 0.0000 0.0000 0.2159 0.0000 0.0000 0.0000  0.0000 1.0000 0.0412 -0.0412
0.0707 0.5367 0.0000 —0.2489 04311 0.0058 0.0874 0.0000 -0.0785 0.0412 1.0000  0.1709
0.0707 0.5367 0.0000 —0.2489 —0.4311 0.0058 0.0874 0.0000 —0.0785 —0.0412  0.1709 1.0000
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ABSTRACT

The sum of the smallest and the greatest eigenvalue of the overlap matrix of diatomic
molecules in a basis of locally orthogonalized linearly independent functions is equal
to 2. Therewith, polynomial expansion techniques for the justification of the NDDO
approximation become identical for diatomic molecules. © 1995 John Wiley & Sons, Inc.

Introduction

]n the second article of this series, the TI'-
expansion technique for an approximate poly-
nomial expansion of A~12 (A is the overlap matrix)
was developed. This expansion revises the S-
expansion for the justification of the Neglect of
Differential Overlap (NDO) methods [1,2].

The coefficients of this polynomial are deter-
mined by Legendre and Chebyshev approximation,
i.e, the best approximation has been calculated
under the L, and L, norms. For the following inte-
gral transformations in Part IV (core integrals and
repulsion integrals), one requires only a second-
order expansion for A~!2 In contrast to former
expansions, these coefficients are functions of the
smallest (s) and the greatest (t) eigenvalue of the

International Journal of Quantum Chemistry, Vol. 53, 537—-540 (1995)

© 1995 John Wiley & Sons, Inc.
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Hermitian and positive definite overlap matrix,
which has been calculated from a finite set of lin-
early independent localized and normalized basis
functions.

Here, we show some properties of the spectrum
of the overlap matrix for diatomic molecules. The
localized basis functions, for instance, Slater or-
bitals, are assumed to be orthogonalized at both
atomic centers. This local orthogonalization is also
demanded from Chandler and Grader [2]. By the
corollaries of the following theorem, we derive
some identities between the expansion techniques,
as discussed in part II. Therefore, we would like to
give a short summary of the expansion techniques:

L. The binomial expansion as proposed by
Brown and Roby [1]in § := A — I converges
only for o(A) C 10,2[. The second-order ap-
proximation reads

- 1 3
A% =1- 58+ gsz.

The numbers 1, 1/2, and 3/8 are the first
coefficients of binomial expansion of f(x) =
X2

2. The formally convergent expansion of Chand-
ler and Grader also uses the binomial expan-
sion;

1
P=r—(-X), )

with X = xI and

‘= max|o(S)| ;— min a(S)‘ )

P fulfills the condition o(P) C ]- 1, 1[; hence,
we have a convergent binomial expansion
and a second-order approximation:;

1\ 1 3
L I-—P + = 2].
Ace (l +x> [ 2P 8P

3. As represented in Part II, one can calculate
expansion coefficients a, b, and ¢ by Legendre
and Chebyshev approximations. With s =
min ¢'(A) and ¢t = max ¢ (A) and definition

s+t t+s

I Kmin =

I'=a-—= 2

the approximation for A=12 reads

Az . =al + bl + cT2

Spectral Properties of the Overlap
Matrix for Diatomic Molecules

Two finite sets of real functions, each set or-
thonormalized, are given by

¢ " l=n=n,
$2  1=n=ng,
with
(¢Flpf) =8, and (f1¢F) = 5,.

All functions ¢f',...,¢,§'a,¢f yeees ¢f,, are linearly
independent. (One possible interpretation is a di-
atomic molecule with locally orthogonalized Slater

functions: ¢ at one atom and qS}e at the other
atom.) Under these presumptions, the following
theorem holds:

Theorem 1: The given overlap matrix A with
Ai; = (il ¢,) has the following properties:

LAEoA) =2—- A€ o(A)
2. o(A) C 10,2[

Thereby, a symmetry of the spectrum to 1 is stated.
For the proof, we need a theorem about the invert-
ibility of an operator matrix [3].

Theorem (Schur) 2: Let n,m € N and let A €
R™,B € R"™,C € R™, D € R™_ For invertible A
(det A # 0), the following equivalence holds:

_ (A B). : : (n+m){n+m)
A = (C D) invertible in R

< D — CA™!B invertible in R™",

Herein, D — CA™'B is called the Schur comple-
ment of A in A.

Proof of 2: We have to verify the equation

A BY_[1 0)(A 0 )
C /™ \cA" 1/\0 D-CA™'B
c
1
I A™'B
x(o *17).
C
2

The right side of the equation is invertible, if the
Schur complement is invertible, because the inverse

538

VOL. 53, NO. 5

oS =3

“ o =vA




Wige > Lo

NEGLECT OF DIATOMIC DIFFERENTIAL OVERLAP. Hli

of C; and C; are easy to find:

(1)
6 7):

and likewise for block matrices. [ |

is the inverse of

Now Theorem 1 can be proved.

Proof of 1: The considered overlap matrix has the

form
_(I,, B
A B ( C In;; ) '

By symmetry of A we have C = B'.

First, we can assume that A # 1, because for A =
1 € o(A) it already holds that 2 — A =1 € o(A).
Then, we have for the elements of the resolvent set
p(A) = C\o(A) (C are the complex numbers):

A € p(A) & Al — A invertible, (3)
with

M- A= ((’\ :121"“ 0 :11;)1"‘;)-

Let us make use of Schur’s theorem: A := (A —
DI, is invertible with A~! = (A — 1)"'1,,_. Thus,
it follows that

A E p(A) N AL — A invertible
Schur

& (A - DI, - B
X (A — 1)7'1,, B invertible
& (A - 1)21,, - B'B invertible,
4)
With A € p(A) then for A’ = 2 — A, the matrix
(A’ = 1I,, — B'B= (1 - 2L, - B‘B

is invertible, too. Using (4), we have ' =2 — A €
p(A).

For the complement in C, o(A) = C\p(A), we
have the analogous statement

AEo(A) =2 - AEo0(A),

[because, suppose that 2 — A € p(A), s02 — (2 —
A) = A € p(A), in contradiction to the disjointness
of o(A) and p(A)].

Statement (2) follows from the positive definite-
ness of A, i.e., o(A) C 10, . If we further suppose

that A € o(A) with A=2,0onehas A’ =2 - A €
o(A), with ' = 0, in contradiction to positive def-
initeness. Thus, we see that o(A) C 10,2[. [ |

Under the presuppositions of Theorem 1, espe-
cially for diatomic molecules, we can draw some
conclusions:

Corollary 1: For the given overlap matrix of
diatomic molecules with s = min o(A) and ¢t =
max o(A), it holds that

s H+r=2,

Proof: By statement (1) of Theorem 1, the
assumption f=2— s # ¢ leads to a contra-
diction. [ |

Corollary 2: For diatomic molecules, it holds that
I'=S.

Proof:I'=A—%(s+t)I. [ |

Observe that the expansion of Brown and Roby
and the I'-expansion technique (cf. Part II of this
series) are expansions in the same matrix. The
expansion coefficients are different. For the case
s,t — 1, the limes for the Legendre coefficients
reads (s =t = 1, i.e,, A = I or a globally orthogo-
nalized basis, was excluded in Part II):

a=c@) =1 b=a®=-7,
3
c=0c(2) = g

Corollary 3: For diatomic molecules, the expan-
sion technique of Chandler and Grader becomes
identical to the binomial expansion of Brown and
Roby. Thus,

P=S
x = /\Imaxl + Amin
2

Proof: Referring to the definition [2] of A,,;, and
Ajmax|, We have

=0.

Amin = min o(A — 1)
=(ming(A) —1=s5s—-1
)llmaxl = max IO'(A - I)I

= max |og(A) — 1| = max{|t — 1],|s — 1]}
s+e=2

= max{lt — 1|,|]1 —¢t]}=1¢ - 1.
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(Notice that t > s >0 and 2 = s + ¢ implies t —
1 > 0.) With Eq. (2) and Corollary 1, it follows that

x=/\|max|+)lm,~,,=s—l+t—1=0
2 2 )
For P defined by (1), it follows that
1
P—-ﬁ_—x(S—X)—S,
so we have
12 1L\ 12
A2 =(——) @+P)S
<1+x) ( )
=(1+S)“1’2=1—ls+3s2+0(s3).

2 8
]

Hence, the binomial expansion is convergent for
diatomic molecules. Thus, for diatomic molecules
(Chandler and Grader discussed the example of
the N, and HF molecules explicitly), Chandler and
Grader’s revision of the former work of Brown and
Roby does not yield any improvement.

Conclusions

Diatomic molecules are often the first objects
of study when developing a quantum chemical
computation method. For this class of molecules,
it has been shown that the binomial expansion
and the P-expansion of Chandler and Grader give
identical results. By Corollary 2, it can be seen that
the I'-expansion, as proposed in part II of this
series, also becomes an expansion in S for diatomic
molecules. However, because of its dependance on
the expansion coefficients from the spectrum of A,
the numerical study in Part II shows that such a
Legendre or Chebyshev expansion in § yields the
best approximations under the discussed norms.

The proved theorem is of importance for the dis-
cussion of the reexamination of justification of the

NDDO approximation in Part IV, where the diatomic
case is most favorable. Furthermore, it plays a cen-
tral role in the numerical study of some diatomic
molecules while accomplishing a calculus of error
of integral transformations (see Part V).

A generalization of the theorem for the case of
n-atomic molecules (n > 2) is formulated in the
following weak theorem:

Lemma: For the overlap matrix of a set of N
linearly independent normalized basis functions,
the following relations hold:

(K_ _s+t)
min 2

1/2 < Kpin < (N + 1)/2.

The proof follows easily from positive definiteness
of A and by regarding the trace of A: tr(A) = N.
So, we have an estimation for T

s+t
2

which is the matrix for the I'-expansion technique.
A stronger formulation of these inequalities should
make use of local orthogonality of the basis func-
tions, i.e., the block structure of the overlap matrix.

I'=A- I,
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ABSTRACT

The Neglect of Diatomic Differential Overlap approximation is examined in terms of a
polynomial expansion in I'. The expansion is based upon the Legendre or Chebyshev
approximation as developed in Part II. Analogous to the theorems of Chandler and
Grader, NDDO cannot be justified for one-electron integrals and only partially for the
two-electron repulsion integrals. © 1995 John Wiley & Sons, Inc.

Introduction

ln this part of the series, the justification of
the Neglect of Diatomic Differential Overlap
(NDDO) approximation will be examined. The ap-
proximation can be summarized by

Mave = OABMAVA,

where 845 is the Kronecker delta and u, is a basis
function (orbital) localized at atom A and »p is

localized at atom B. Thus, the NDDO approxima-
tion assumes disjoint supports for the functions
localized at different centers.

For the two-center matrix element of a one-
electron operator, the NDDO approximation leads to

My, ~0.
(u is localized at atom A, and », at atom B;A #

B.) As will be developed in the following, no
justification for this approximation can be given.
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The NDDO approximation is more favorable for
electron repulsion integrals (two-electron integrals):
(nave|kcop) = 8apdcp(paval kcoc). (1)

The two-electron integral reads

(wavp|kcop) = [ dridroju(r; — Ry)

— Rp)Ir — ™!

R¢)o(ra — Rp).

X V(I‘1
X k(ry —

(m4 is localized at atom A, and v, localized at atom
B, and so on. Real basis functions are assumed.)

The I'-expansion technique for A™Y2 (A is the
overlap matrix) in terms of Legendre and Cheby-
shev polynomials as developed in Part II will now
be applied to the justification of the NDDO approx-
imation. As can be seen in the following, NDDO
cannot be justified in the general form (1).

Under the different methods of justification
of general ZDO approximations, the S-expansion
technique developed by Fischer—Hjalmars [1] for
ar-electron systems is of central importance.
The S-expansion technique works in a basis of
symmetrically orthogonalized functions, often
called the Lowdin-basis. Some other methods
are summarized by Chandler and Grader [2].
The presuppositions of some methods for the
theoretical foundation of the NDDO approximation
seem to be of more theoretical interest. For instance,
in Roby’s approach [3, 4], the discussion starts from
a complete basis set on each atom. The minimal
basis ansatz of valence orbitals for the calculation
of methane molecule (cf. Gray and Stone in their
criticism of S-expansion technique [5]) is remote
from a complete basis. The one-dimensional space
of a 1s Slater orbital at one hydrogen atom is not
suitable for generating the four-dimensional space
at the carbon atom.

The T-expansion technique of Part I is a gener-
alization of the S-expansion technique. A second-
order expansion in I' reads

A™V2 = gl + bT + cI? + O(I®), )

withI' = A — [(s + ¢)/2])f and s = min ¢(A), t =
max o(A). Legendre approximation yields for the
expansion coefficients

2
R RS P it i I S
PSS ) )

b = —4(t"? + §12)73, @)

c = 12(12 + 51275, ()
Using Chebyshev approximation, one obtains

a=—=dy — az,
2611

(t—3s)’
8as

T - SR

b=

with

(4i — DI Q2i — DN [t — s\
o \/m Z @n @ (t T s) ’

. — Z (4i + DI 2i + DN (t - s)z"“
T its &GN QAN \s+s)
B Z (4i — D1 @i — N i(t - s)z"
Ji+s @ i+ \r+s/°
In this article, an examination of the justification
of NDDO approximation is given. Therefore, we use
a I'-expansion. The dependence of the expansion
coefficients a, b, and ¢ on the spectrum of the
overlap matrix of the discussed quantum chemical
problem gives insight into the relation between
quality of NDDO and the spectrum of the overlap
matrix. Interesting results for diatomic molecules

are obtained by utilizing the spectral properties of
the overlap matrix (see Part III).

I2

a;

DEFINITIONS

It is advantageous to index the sums in a trans-
parent manner for the following integral transfor-
mations. Thus, let S be a finite set of N localized
and linearly independent atomic orbitals. More-
over, the elements of S are normalized and locally
orthogonalized, i.e., the orthogonality is required
for orbitals that are localized at the same atomic

center. The orbitals are labeled by small Greek
letter:

S={u,v,ro0,x.. ) N :=|S].

The equivalence relation ~ “localized at the same
center,”

M~ v < uand v are
orbitals at the same atom,

decomposes S in disjoint subsets A4, B, C,. .., which
corresponds to an indexation of the atoms. Let C
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(Cores) be the set of the N, atoms:

S/~ =C ={A,B,C,.. }, N, :=|C|.
(The algebraic notation S/. denotes the set of
equivalence classes of S with respect to ~ and
is called the quotient set of S with respect to
~ [6])

Sometimes it may be useful to index the orbitals
of S with 1,...,N. In this case, let (¢;);=1,..n be
the orbitals of the locally orthogonalized set S
of basis functions (¢-basis), and (A;)i=i,.,~, the
same basis after a symmetrical orthogonalization
(A-basis). Furthermore, let A be the overlap matrix
in the ¢-basis and §$ := A - I.

Integral Representation in the
Lowdin Basis by the I'-expansion
Technique: Transformation of
One-electron Operators

With the vector of locally orthogonalized func-
tions (¢1,..., dy) and the overlap matrix

A=fdr(¢ls---9¢N)t(¢l,""¢N)$

one gets the vector of symmetrically orthogonal-
ized functions (Aq,...,An):

(/\Iv ) AN) = (()bl" L) ¢N)A_1/2'

The local orthogonality of the functions of § can be
expressed by VA € C, Vu,v € A:

A,u.v = 8/.:,1; =>S,u,y =90 and
s+t
o o a1 220

The transformation of the matrix representation of
a one-electron operator into the locally orthogonal-
ized basis is as follows:

)tM = A_I/ZMA_UZ.

With the I'-expansion (2) to the second order, one
obtains

AM = a’M + ab(MTI + I'M) + ac(MT? + I'*M)
+ BI'MI + o). (6)

Now let us calculate the matrix elements of *M;
therefore, we utilize the Mulliken approximation
[7] in the ¢-basisVA,BE C,A + B, € A, v € B:

A, Luv
M;w = _g_[M,u,;L + MVV] = %[M/L[L + MVV]'
™)

The Mulliken approximation is only applied to
those two-center elements M- that have a leading
coefficient of the second order in TI'. [For those
nondiagonal elements of A, it holds that u,v €
S, w# v, and 'y, = S,,. Hence, after applying
the Mulliken approximation, these terms can be
collected in O(I'3).]

Strictly analogous to Egs. (26) and (27) of Chan-
dler and Grader [2], the calculation results:

Yu,vES;u,vEAun+v

AMA ~ M, (cﬂ + 2abT,, + 2ac Y. Ffw)
g€S
+ 2ab MyueUsy
aeS5\{u}
+ b2 > Mg T2,
€S

+ 2ac Z Z M).;Lrpartr/\
ocES\{u} o€S

+52 D> > MuoTuTs + 0
AeS\[og} oES

(8)

"M =~ M,,(a* + 2abT,, + b°T})

+ ab Z [M/.urrav + Mo*vr;ur]’
cES\{u, v}

+ac Y M,[I?, +T%,]

oGS
+ >
oES\A
X [ac(M;l.p. + MVV)F/.W'F(IV + szo‘a'F,u.chau]
+ ac Z
pEA\{y,u} ©E€S
X My T uoTop + MupTpels]
+52 Y > [MpT,,Ta]+ o).

PES\A cES\(AU{p})
)

This and the following equations are written ap-
proximatively, using “~”, because the Mulliken
approximation has been employed. In Part V of this
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series, all approximation errors will be thoroughly
analyzed.

For the two-center matrix element, *MA2, one
obtains by an exhaustive application of the Mul-
liken approximation:

VA,BE C,A # B,.VYu €A Vv €B

AMLE ~ LuM,, +M,,)
X [a%/2 + ab + Fuu(ab + b2 + 2ac)]
*ab > TuM, +ab Y T,M,,

oc€B\{y) €Ak}

+2 5 .o,

cES\AUB)
X [M/Lu +2M,, + M,,]
+ D> T,T,
cES\AUE)
X [acM,, + b’M,, + acM,,]

+ b2 § § TpeM,,T,,
EEC\{4, B} p.ziEE
pEo

+ (2ac + b?)

xl: D> M, T,, + >y F,L,,M,,,,l"w]
oeA\{u} o€B\{r}

+ ac
oE€S\(AUB)

x| > T,,T,M, + > ru,,r(,,,M,,,]
PEA\{u} PEB\(v}

+ o). (10)

Hence, two conclusions can be drawn:

1. No justification for an application of the NDDO
approximation on two-center integrals can be
seen. It is true that

M~ 0+ o),

however, the terms of the first order cannot
be neglected. In accordance with Brown, et al.
[8], Brown and Burton [9], and Chandler and
Grader, the NDDO approximation is not appli-
cable to one-electron operators.

2. Furthermore, an identification of the integrals
in the ¢- and the A-basis is not possible. A
very rough approximation is an expansion of
the zeroth degree, where

‘M, =~ *M,.a* + o),

with a scaling constant @?. (The scaling con-
stant has to be calculated for a polynomial
expansion of the zeroth degree; cf. Part I1.)

Two-electron Integrals

The charge density matrix in the ¢-basis is de-
fined by

0 = (¢1v~--a¢N)t(¢l5“"¢N)' (11)

Like one-electron operators, it transforms into the
Lowdin basis:

’\.Q, _ A—I/ZQA—IIZ. (12)

From this follows the representation of the repul-
sion integrals by

Muvled) = (0,31 [20,,2)

= f[ dridr, "QM,,(I)

X Ir — r|7110,,2).

In agreement with the other works cited above,
Chandler and Grader asserted that the NDDO
approximation is only partially justifiable for the
two-electron integrals. For the justification in the
Léwdin basis, one has to transform the integrals by

Z (A~ 1/2)#,‘

wy,steS

>< (A_IIZ)VU(A_I/Z)KS
X (A1), (uv | s2). (13)

Muvlka) =

However, for this full transformation, one needs
all two-electron integrals in the ¢-basis; such a
procedure has no advantages. Hence, we have to
restrict the domain of the linear mapping (13) to
the NDDO-surviving integrals by substitution of
the two-center charge distributions by one-center
charge distributions using the Mulliken approxi-
mation [7]:

Yu €AYy EBVYABEC

|
Qu ~ g [Q.. + Q,,]. (14)

(For nondiagonal elements of A, itholds that T uy =
A,uu')
One obtains by Mulliken approximation

C+D
A
P(mavalkcAp) = _2LA[¢(,U'AVA | kcre)

+?(uava [ ApAp)],
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and for A # B and C # D,

A[LVAK/\
2

X [?(up| k) + ¢ (up] 1)
+P(vv | ki) + ¢ (wr | AN].

?(wavp | KcAp) =

Figure 1 summarizes some aspects of the con-
cept. The two-electron integrals in the ¢-basis can
be found on the left side and on the right side
those in the A-basis. The domain of the linear
mapping from the ¢-basis to the A-basis can be re-
stricted to the NDDO-surviving integrals due to the
Mulliken approximation (vertical arrow). For this
reason, the lower-left box containing the integrals
¢(wavp | kcAp) is not connected to the integrals in
the A-basis. In the section NDDO-surviving Integrals
the transformation of the NDDO-surviving integrals
is given (horizontal arrow); in the section Inte-
grals with Two-center Charge Distributions follows
the discussion of the justification of NDDO by an
analysis of the integrals with two-center charge
distributions (diagonal arrow).

By Egs. (8)—(10) and with respect to (14), one
can calculate the matrix elements of the charge
density matrix in the Léwdin basis, which only
depend on one-center matrix elements in the locally
orthogonalized basis. By means of a Kronecker
delta, (8) and (9) can be treated commonly. The

LOCALLY ORTHOG. BASIS

NDDO-surviving integrals

Transformation

calculation leads to Vu,» € A € C:
4 =~ .Q,U,[ a* + 2abT,, + (2ac + b2,

+ (1= 8,)ac > (2, + 1*3,,)]

sES\A
+ Z F/LUFVU

oES\A
X (2 + ac) (@ + Q) + (@b + 5300

+ ac Z

pEA\(n, 1} ocES\A

X AT 2oT0pQpy + Dol Q)
+52 > > T,I.0Q., +0I%, (15)

ceC\{A} v;)ﬁc
and VA BEC,A+ B u€EAvERB:

)‘Qﬁﬁ = r#v(‘o'u# +0,.)
X [a%/2 + ab + T,,(ab + b* + 2ac)]

tab > Tueley +ab D oo
cEB\{»} aEA\{u}

+% S r,T,

2 oES\(AUB)
X [Quu + 2Q00 + Q]

+ > Twla
cES\(AUB)

X [acQ,, + b*Q,, + acf,,] + O(T?).
(16)

LOWDIN-BAsIS
Transformation

NDDO-surviving integrals

?(navalkpAB)

Mulliken approximation | |

Integrals with diatomic
differential overlap

*(pave|rcAp)
A# Boder C# D

are not to be computed

Justification

Mpavalksrp)

. (AA (AA
Types: G44, G55

Justification_of NDDO

has to show that
*(pavslreAp)

A#BorC#D

becomes “small”

| Types: G48, G418, G&B

AA AA
GAD’ GC‘D

FIGURE 1. The two-electron integrals in the locally orthogonalized basis (¢-basis) can be found on the left side and
on the right side those in the Léwdin basis (A-basis). The transformation of the NDDO-surviving integrals are analyzed
in the section NDDO-Surviving Integrals (horizontal arrow). The section Integrals with Two-center Charge

Distributions is a discussion on the justification of NDDO (diagonal arrow).
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The last formula follows from employing a fur-
ther approximation as introduced by Chandler and
Grader [2]. In our notation, it reads

(mavalxu) = O(T) (up | kK) for u+ v,

This approximation neglects one-center nondiago-
nal elements of Q, if they have a leading coefficient
of the second order in T, since after application of
this approximation, the term vanishes in O(I'%):

LasUealpara | k) = O(I?). 17)

Thus, from the terms of the second order in T,
only diagonal elements of Q are preserved. There-
fore, let us call this approximation the “diagonal-
approximation.”

The diagonal-approximation is applied for the
transformation from (10) to (16). After calculating
the representation of the two-electron-integrals,
one can employ the diagonal-approximation
exhaustively.

The discussed proceeding follows the argumen-
tation of Chandler and Grader; analogously, we
obtain some results that partially justify the NDDO
approximation. The effects of the various integral
approximations (truncated binomial expansion of
A~'2, Mulliken approximation, and the diagonal-
approximation) will be studied critically in Part V.

Let us proceed in developing the two-electron
integrals in the symmetrically orthogonalized basis:

)‘(/J,V I KA.) = (AQ[LV(I) I AQ'K/\(Z)) . (18)

The integrals can be classified from the manner in
which they are derived. Let G be the set of all
(N*) repulsion integrals. This set can be decom-
posed into seven disjoint subsets (compare with
the slightly different definition by Chandler and
Grader):

G- ot
H_J

one center

UGszs U G448 U G428
L J
two centers
UG UGLU G (19)

three centers

four centers

For instance, Gég consists of ail four-center inte-
grals:

Gep = {(uavp | kcAp);
A, B,C, D pairwise different} .

The different combinations of (15) and (16) lead to
a classification into three types:

(i) The sets G44 and G4 consist only of one-
center charge distributions. They describe the
NDDO-surviving integrals.

(i) G4B, Ga2, G&5. These two-, three-, and four-
center integrals contain in their (generalized)
“bra” and “ket” only two-center charge distri-
butions. They have to be calculated from (16).
The generalized “bra” of (18) is *Q),,, (1), and
the “ket” *Q,(2).

(iif) G44, G&4. These integrals can be calculated
from a one-center and two-center charge dis-
tribution: (15) and (16). The two-center term
can be found in the “bra” or in the “ket.”

The transformation of the integrals of type (i)
provides an approximative description of the
NDDO-surviving integrals in the Léwdin basis. The
other types are needed for the justification of NDDO
approximation.

NDDO-SURVIVING INTEGRALS

With the one-center charge density Aﬂﬁ’,‘, (15)
and (18), one obtains the integral representation of
type (i):

VA, BEC,A=B or
A# BYu,veE AV, AEB
1, ~
22 (wrled) = (uv | xh)
X (a* + 4abT,, + (66> + 4ac)T2,)

+ > [a(% + C)Fxo-ra-/\((,u'leK)

oc&S\B

+ (uv | AA) + b(a + b)

X TeoeToa(urv| oa)l

+ D [a(% + C>erw((ﬂﬂ|'<)1)

oES\A
+ (vv K A))
+ bla + b)l",wl",,,(aa'llc/\)]

+ ac(uv | ki)

X [(1 - 5:(/\) Z

oES\B
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X (K3, + T

+ (1 - 5/LV) Z (F?zcr + F;’io-)
sES\A

+ ac Z Z

pEB\{«,A} cES\B
X [(,LLV | p)t)rmr
X Typ + (uv1kp)TpeToa]

+ ac
pEAN{u, 7} cES\A

X [(PV l KA)F/J.O'FU',O
+ (up | K/\)chrrav]

+ b? Z Z. (uv | U'p)r/cprm\
ceC\{B} 0, pEC
pFo

+ b2 Z Z (po | kT wp oy
ceC\i} o, pEC
p#o

+ 0(I?). (20)

The integral A(uv | kA) can only be written approx-
imatively due to the Mulliken approximation.

By identification of the atoms A and B and/or
identification of the functions u,»,x, and A
(observe the Kronecker delta), one obtains linear
transformations for all NDDO-surviving integrals.
Equation (20) correspond to Egs. (42)—(45) from
Chandler and Grader but in a more generalized
form. Chandler and Grader [2] proposed an identi-
fication of the integrals in the local orthogonalized
basis with that in the Lowdin basis:

VA, BEC,u,v EAK,AEB

A(uaval kpAg) = Hwaval kpAs).

By regarding (20), one cannot agree to this proposal.
Only an expansion of the zeroth degree leads to an
integral scaling

Muava | kars) = Hpava | kprg)a* + O(T).

For this approximation, the Legendre coeffi-
cient reads a = ¢(0) = 2(t¥2 + 52)71 (cf. Part II).
Therewith, we have established a scaling constant
analytically; compare Chandrasekhar et al. [10].
Nevertheless, the proposed identification of inte-
grals will find some justification by study of the
approximation errors in Part V.

INTEGRALS WITH TWO-CENTER
CHARGE DISTRIBUTIONS

For the calculation of these integrals of the
types (ii) and (iii), the diagonal-approximation (17)
is utilized. As mentioned above, a subsequent
check must be made to determine whether the
wish to have simple equations for justifying NDDO
was causal for the introduction of the above
approximation. For the integral types (ii), i-e, G418,
Gﬁc, and Gég, one obtains
Yu € A,Vv €B,Vx € C,YAED,A+ B

and C # D
v | kA) = (@%/2 + ab)ZI‘M,,l"K,\
X [(pep | ki) + (uplA2) + (vv | kx)
+ (pr|AN] + O(?). (21)
Conclusions will be discussed in the next section.

In the remaining case (iii), i.e., the integrals Gad

and G235, we have to make a further distinction.

Only G244 has to be investigated, because the iden-
tification C = A leads to the two-center integrals.

Let u,» € A,k € C,A € D,C # D, then

Hp#+r
Muv | kA) = a*(a*/2 + ab)T
X [(uv | ki) + (uvlAA)] + ord.
(22)

@) p=v

] 1
= Mupled) = 5 (O o

~ (a*/2 + ab + T,,(2ab + 2ac + 3b?))

X Tal(up | k) + (puel AA)]
+ (ab + 2b21",m)

X[ > Tewlpplod)

geD\{A}

+ Y Toaluml Kcr)il

o&C\{«}

+ Z an ro’)\
ocES\(CUD)

X [(ac + %?-){(MMMK) + (| AN}

+ (ab + b?) (/«b,ulcm)]

+ o(I?). (23)
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TO THE JUSTIFICATION NDDO

The approximation of NDDO applied to two-
electron integrals leads to a reliable nonempirical
quantum chemical computation method, if the in-
spected integrals in the last section “become suf-
ficiently small.” Let us first analyze Eqs. (21)-(23)
for the instructive diatomic case:

(a) Diatomic molecules:

Chandler and Grader showed in Eq. (36) of [2] for
the integral type Gap (for the diatomic case only
Gﬁg) that

(1 + x)* pr|ro) ~ %[S,ws)w = SurPao
= PuuSae + PuyPiol
X [(mpl Ad) + (2| AA)
+(uploo) + (vvloo)]
+ 0(P%).
This equation stands in close analogy to Eq. (21).
Using Corollary 3 of the theorem in Part III of this

series, which says P = S for diatomic molecules,
one derives

[S,uuS/\a - S/LVP/\O' - P;LVS/\U + P;LVPAO'] =0
Muv|io) =0 + OP?).

The corresponding factor ¢? of the sum of the
second order in I’ of (21) reads

2 a? :
q° = 7+ab . (24)

Employing the I'-expansion technique, the relation
between the spectrum of the overlap matrix and
the quality of NDDO approximation can be studied.
Because of their closed representation, let us use the
Legendre coefficients (3)—(5) and use the proved
property, s = 2 — ¢, found in Part III:

2
q= % + ab = —6
o @2 = P2 = 0" - 12Q - 2 + 32 — 6 + 1
(2 + (2 — 1)) :

(25)

q:

the symmetry under permutation of s and r of
the general coefficient formula (cf. Part II), let us
continue the function to r € ]0,1{ U]1,2[. For s =
t — 1, the limes reads (the choice s = r = 1 was
excluded)

b=-1/2, c¢=3/8.

a=1,

These are the first coefficients of the binomial ex-
pansion. In this case, one obtains

)
9= +ab — 0.
Thelimes s = ¢ = 1is equivalent to o(A) = {1} and
A = I. Thus, for a globally orthogonalized ¢-basis,
one has the best possible justification of the NDDO
approximation for the integral G&3 (here only G43)
of diatomic molecules:

s=t=1 *Muv|e) =0+ 0T?).

Moreover, ¢ is bounded (see Fig.?2). For ¢ — 2
(s — 0), it holds that

9 2
7= (% + ab) —— (~0.75)* = 0.5625.

One has for G2p generally
Hurlkd) =~ 0+ o(T?;

therefore, the NDDO approximation seems to be
sufficiently justified in agreement with Chandler
and Grader.

The judgment for the remaining integrals Gad
is unfavorable, because Egs. (22) and (23) contain
terms of the first order in T. However, in case (1)
for u # v, the leading coefficient ¢ (to the power
of one) provides some restricted justification, es-
pecially for ¢ — 1(g — 0). In case (2) for uw = v,
no justification of the NDDO approximation can
be seen. Also, the substitution Iy, = 0 (valid for
diatomic molecules under local orthogonality) does
not simplify (23) sufficiently.

(b) n-atomic molecules:

~ The coefficient (24) reads for Legendre coeffi-
clents as a function of s and z:

—8(t +5) + 12 4+ 52 4 SP(126%2 — 48112y 4 3845 + 12412532

Figure 2 shows the function for r € ]1,2[ that is
the possible interval for the greatest eigenvalue
of the overlap matrix of a diatomic molecule. By

2(,1/2 + Sl/2)6

FiguerB shows g¢(s,7) for (s,2) € 10,8 by the
wnvarlance of g under permutation of s and ¢, the
function can be continued. The limes s = ¢t — 1,
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FIGURE 2. Coefficient g (t) for diatomic molecules. Abscissa: t; ordinate: g (t).

which implies a globally orthogonalized basis,
leads also to g = 0. From the normalization of
the basis follows s < 1 (by the discussion of the
trace of the overlap matrix). One can conclude by
inspection of Figure 3 that the greater s is the better
the NDDO approximation is fulfilled.

With (21), we conclude analogously that for
G885 (G4E,G48), the approximation is sufficiently
justified. For the two- and three-center integrals
G44 and G, especially for u = v, the validity is
restricted to the zeroth degree only.

FIGURE 3. Coefficient g (s,t). Abscissa:
s,t; ordinate: g (s,t) = q(t,s).

Numerical Illustration:
Boron Nitride (BN)

Let us discuss the isolated boron nitride (BN)
molecule to represent the order of magnitude
of the involved integrals exemplarily. An all-
electron minimal Slater basis of 10 Slater orbitals
has been used: bond distance, dpy = 1.281 A;
single-zeta exponents are given by Clementi and
Roetti [11].

Figures 4 and 5 allow a comparison of the fre-
quency distributions of the values of repulsion in-
tegrals in the locally orthogonalized basis with that
in the Lodwdin basis. The calculation was performed
without integral approximations following Eq. (13)
using the program DIATOM available at QCPE
[12]. DIATOM is embedded in a program package
UHF2 by Koch [13], from which only the integral
part was used. On the ordinate, the frequency
of repulsion integrals within the abscissa interval
[(#)/(1000), (i + 1)/(1000)] for i € [—1000,1000] N
Z can be found. Except for the integrals of value
zero, most of the integrals are plotted in the selected
window. Integrals of value zero lie outside this
window. From the 2500 NDDO-surviving integrals,
1712 have the value zero. In Figure 4(a) and (b),
one can compare the integrals with differential two-
center overlap; these integrals are neglected by
NDDO approximation.
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FIGURE 4. Frequency distribution of repulsion integrals of boron nitride (BN); Abscissa: value of integrals;
ordinate: frequency within abscissa interval 1/1000. The notation (x,y) stands for x integrals of value ,
zero from a total of y integrals. (a, b) Repulsion integrals with two-center charge distribution: (a) locally
orthogonalized basis (5136, 7500); (b) Léwdin basis (5136, 7500). (c, d) Repulsion integrals of types

2D (G2, GAB); (c) locally orthogonalized basis (1712,2500)

The NDDO approximation is only poorly fulfilled
in the locally orthogonalized basis because of the
wide flank in the abscissa interval [0, 0.5]. It is much
better justified in the symmetrically orthogonalized
basis due to the peak that is centered at zero and
sharper than in the other basis. (This empirical
finding motivates the theoretical investigations of
the symmetrically orthogonalized basis.) Local or-
thogonalization was performed using a Schmidt
procedure.

Figure 4(c) and (d) show an analogous behav-
ior for the integrals of the type G&p (G4Z,G43

; (d) Léwdin basis (1 712,2500),

for which the approximation is best justified. The
frequency distribution of these integrals is charac-
terized by a sharp peak at zero.

The remaining integrals with differential two-
cgnter overlap of types G5 and G43 are inves-
tigated in Figure 5. For these integrals, the NDDO
approximation is badly fulfilled, especially for the
case of identical functions M,y € A with pu =,
which is shown in Figure 5(c) and (d).

The symmetrically orthogonalized basis is for
NDDO approximation more appropriate: This or-
thogonalization “centers” and “sharpens” the in-
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FIGURE 5. Frequency distribution of repulsion integrals of boron nitride (BN); Abscissa: value of integral;
ordinate: frequency of within abscissa interval 1/1000. The notation (x,y) stands for x integrals of value
zero from a total of y integrals. (a,b) Repuision integrals of type G (GR2): (a) locally orthogonalized
basis (3424,5000); (b) Lowdin basis (3424, 5000). (c,d) Repulsion integrals of type GZ% (Ga5) with

w = v: (c) locaily orthogonalized basis (560, 1000); (d) Lowdin basis (560, 1000).

tegral distribution. The results of the theoretical » The application of the NDDO approximation
investigation are in agreement with this numerical on one-electron operators is only justifiable
example. for an expansion of the zeroth degree inI'. An

identification of the matrix elements of one-
electron operators of the locally and the sym-
metrically orthogonalized basis is a crude ap-
proximation. The expansion of the zeroth de-
gree leads to an integral scaling constant a®.

Summary and Conclusions
Already for an expansion of the first degree,

The discussion of the one- and two-electron in- no justification of the NDDO approximation
tegrals in the symmetrically orthogonalized basis can be found. All one-electron integrals have
lead to the following results: to be calculated and transformed.
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* The neglect of two-electron integrals with

two-center charge distributions in the gen-
eralized “bra” and “ket” finds the best
justification.

For repulsion integrals with only one two-
center charge distribution, we have a limited
justification, if the one-center charge distribu-
tion consists of different functions. A neglect
of integrals (uum|xd) with k EB # C 5 Ais
only possible for an expansion of the zeroth
degree. This is too crude for the concept of a
nonempirical quantum chemical computation
method using the NDDO approximation as
formerly proposed [8,9,14, 15].

By neglecting integrals of the type G4$, one
has to expect uncontrolled errors even for
diatomic molecules. Brown and Burton [9]
called the integrals of G4ip and G& the
“essential structural elements of the ab initio
SCF-LCAO F matrix.” Their proposal of a
nonempirical (ab initio) computation method
works in the locally orthogonalized basis.

For all NDDO-surviving integrals, approxima-
tive transformations into the Léwdin basis
are given. An identification of the integrals
in both bases corresponds to a polynomial
expansion of the zeroth degree with a fixed
scaling constant a* = 1.

CRITIQUE OF PROCEDURE

All employed arguments relate to the poly-
nomial expansion in I'. However, the errors
introduced by the Mulliken and diagonal
approximation remain uncontrolled. Fur-
thermore, the error that is caused by the
second-order polynomial in T' cannot be
estimated. This situation is unsatisfactory
and not helpful for the development of a
simplified nonempirical quantum chemical
computation method.

Therefore, all integral transformations in this

article are written approximatively (“=~"),
what has been uncustomary up to now. A
complete calculus of error for all different
types of approximations that have been
made in the course of the derivation of the
transformations of two-electron integrals can
be found in Part V.
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ABSTRACT

Several types of approximations have been used for the justification of the Neglect

of Diatomic Differential Overlap (NDDO) in Part IV but control of the introduced

error remains insufficient. Analytic formulas describing the induced error for all
types of approximations are given. Numerically lower bounds for these errors can be
derived from the discussion on diatomic molecules. Far-reaching consequences on the
applicability of NDDO will be discussed. © 1995 John Wiley & Sons, Inc.

Introduction

l n the preceding articles of this five-part series,
a new approach to the justification of the
Neglect of Diatomic Differential Overlap (NDDO)
approximation was developed. First, a polynomial
expansion for A™12 (A is the overlap matrix) in
terms of Legendre and Chebyshev polynomials was
given. This expansion technique is a new solution
of the convergence problem [1] of the S-expansion

of Brown and Roby [2]. This technique was called
the I-expansion; herein, T' = A — [(s + )/2]1,
with s = min ¢(A) and t = max o(A). It has been
shown in Part II that this technique achieves more
accurate results than does the formally convergent
P-expansion of Chandler and Grader [3]. The
techniques are developed for the transformation
of the one- and two-electron integrals into the
symmetrically orthogonalized basis. In Part IV,
the I'-expansion was used for an examination of
the justification of the NDDO approximation in the

International Journal of Quantum Chemistry, Vol. 53, 553568 (1995)

© 1995 John Wiley & Sons, Inc.
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symmetrically orthogonalized basis. NDDO was
not justified for one-electron operators and only
partially for the two-center repulsion integrals (cf.
Part IV).

All the integral transformations were deduced
with use of the following three approximations
(Mulliken approximation, diagonal-approximation,
and the polynomial expansion to the second de-
gree). But control over the introduced error is in-
sufficient, Taking into account this problem, the
integral transformation in Part IV are written ap-
proximatively, using “~", a practice that has beén
uncustomary up to now.

Moreover, the insufficient control of error seems
to be an essential weakness in former proposed
justifications of approximative quantum chemical
computation methods. Primarily, the truncated ex-
pansions of A~!2, the Mulliken approximation,
and the incompleteness of bases that are used
for Riidenberg expansions are to be listed while
justifying Neglect of Differential Overlap (NDO)
methods. Here, a complete calculus of error and
analytic formulas is given for the caused error for
each approximation that was employed. The nu-
merical evaluation of these formulas shows that the
representation of a two-electron integral containing
two-center charge densities in the Lowdin basis is
of the same magnitude as the error that belongs to
the considered integral transformation.

DEFINITIONS

Let us summarize the definitions of Part IV that
are used here:

S is the set of N localized and linear independent
orbitals that describe a locally orthogonalized basis:

N :=|S]:

A is the overlap matrix of these orbitals; § := A —
I. The quotient set under the equivalence relation
“localized at the same center” is used to label the
atoms:

S ={u,v,Ao,k..}

C={4B.C,..} N,:=|[C|.

The basis of the functions of § is called the ¢-basis;
after symmetrical orthogonalization, it is called the
A-basis.

The I'-expansion for A~12 reads

A7 = g + BT + cI? + O, 1)

withT = A = [(s + #)/2]I and s = min o(A), t =
max o(A). The expansion coefficients a,b, and ¢

are to be computed by Legendre or Chebyshev
expansion (cf. Part II).

Calculus of Error for the
Integral Transformations

USED APPROXIMATIONS

In the course of the derivation of integral trans-
formations in part IV, the following integral .ap-
proximations were utilized:

1. Polynomial expansion for A2 to the second
degree in T.

2, Mulliken approximation used for one-
electron operators in the ¢-basis:

LWEA+BDy
A
S MaE ~ —5 ‘M, + *°M,,].

The analogous formulation for the charge
densities ¢ @y dr reads

Auy
60 = (D + $u].

3. Diagonal-approximation neglects by

(ava | k) = O(T) (uplek) for p# v

one-center non-diagonal elements of €} if the
considered integral has a leading factor of
the second degree in I'. After application
of this approximation, the term vanishes in
o(r?).

A formulation of the diagonal-approximation for
one-electron operators that is compatible with the
definition above reads

My, = OT)M,, for w # p.

This approximation is only applied if M, has a
leading factor of the second degree in I'. Then, the
considered term vanishes under this approximation
to O(T?). An exhaustive application of diagonal-
approximation to repulsion integrals cannot be rep-
resented by applying the approximation to the
charge density matrix; one has to regard this for
the calculation of integral transformations.
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NEGLECT OF DIATOMIC DIFFERENTIAL OVERLAP. V

THE APPROXIMATION ERRORS OF
ONE-ELECTRON OPERATORS

In the following, analytical formulas describing
the approximation errors shall be developed. On
the one hand, these equations shall allow estima-
tions of maximum error; on the other hand, they
shall be appropriate for a numerical evaluation by
a nonapproximative method. Some new notation
has to be defined for the realization of this scheme.

For two-center matrix elements of a one-electron
operator M, the approximation by means of one-
center matrix elements reads by Mulliken [4]

o Bw
WEA#*BSDv M,W~T(MW+MW).

For the nondiagonal elements, one has w # v :
Ay, = Tyy. Let my, be the error of Mulliken ap-
proximation, then, the following equation results:

MWEAFBDvw
)
M, = —%(MW + My,) + my,. )

Now the representation of the matrix-elements of
one-electron operators in the Lowdin basis can be
calculated as in Part IV, but all errors due to the
Mulliken approximation will be collected in »;,AM.

The treatment of the diagonal-approximation is
easy: Let 4;,;sM be the sum of all terms that are to
be neglected by diagonal-approximation. As men-
tioned above, these are nondiagonal elements of
one-electron operators with a leading coefficient of
the second order in T

Fab chwa ad 0(r3) with

Therefore, the matrix representation of a
one-electron operator in the Lowdin Dbasis
decomposes to

‘M =t);M + diagM + Mul/)M + 0(113) . (3)

The matrix #M describes the contribution of in-
tegral transformation after applying the approx-
imations; it is identical to the representation as
developed in Part IV. Equation (3) is exact in the
limes of the O-function.

The nonapproximative transformation into the
symmetrically orthogonalized basis reads

AM = A~Y2pMA-Y2,

Now, the error *0 that is caused by the expansion
of A~ to the second order can be estimated. One
has to calculate *M, M, 4,2M, and y,AM by a
nonapproximative method “exactly”:

wFp.

With a I'-expansion of the second degree, one
obtains

‘M = a’M + ab(MT + I'M)
+ ac(MI? + T*M)
+ b2I'MT + O(T?).
Therewith, analogously to Paper IV for the ore-
center matrix elements, follows
MY = AMA + A M+ o).
(5)

They read explicitly (free of restriction u = » or
pFrv)VAECVu,v € A

oMy = My,[a® + 2abT,, + ac + 32 ]

+ > Tl
oeS\A

X ((% + ac)(M,L,L + M,,)
+ (ab + bZ)MW) +0T?%,  (6)

and for dia;\M v
dia;r\M/w = M,uu(l - 5,uu)ac Z (Ffw + I‘,Z,a)

cES\A
+ ac Z z (F#arapMpv

pEA\{u, v} oES\A
+ Fvaro'pMp/.l-)

+ b Z Z PuplovMpo

ceC\{a} o,pEC
pto

+ 0(I). )

and for the error introduced by the Mulliken ap-

proximation it M ,’iﬁ,

Mu,)}MM,, = ab Z (Tuotmoy + Toymys)
o&S\A

+ b? Z Z LupTovmpg
C,DEC\{A} pEC

c#D  o€D
+ (2ac + b?) Z Tup
oES\A

X (Fa'vm,u.a + Faumva')

2. Too

C,DEC\4} pEC
C+D ~ o€D

+ ac

X Tuomoy + ygmey) + or?).
(8)
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The summand M,,(2ac + b*)I'2 , remains in M,
to meet the requirement of the case w=». A
similar summand in d,-ag‘M uv causes no difficulties
because of the Kronecker function.

The representation of two-center matrix ele-
ments in the Lowdin basis decomposes to three
sums, also:

"My = oML+ sagMas + M + O(F%).
)
For A,B € C,A +# B,u € A,v € B, holds that
aMas =T My, + M)
X [@*/2 + ab + T,,(ab + b + 2ac)]

+ ab Z TpeMy,y
oeB\{r}

+ab Y ToM,,
oA\ {1}
ab
o > Tula
ocE€S\(AUB)
XMy, +2Moy + M), ]
+ Y Tulo

o€S\(AUB)
X [acM, + b’My, + acM,,]

+ o(T?), (10)
M =p Y

diag Z F/LU'MO‘[) va

EECNA,B} p,0CE
pFa

+ (2ac + bH

x[ > TuuMuoTo,
o€A\p}

+ Z LuoMoyTpp :I
o€B\[s}

+ ac
c&€S\(AUB)

x[ > TloM,,

pEAN e}

+ > FM,FU,,M,,{I
PEB\(v}

+ o(r?), (11)

wuhtMAS = [a* + 2abT, + (b* + 2a0)T2 Jmy,

B
+ ab Z

aES\(AUB)

F,uo'mo'v + Ty Myo

+ b Z Z Luotaplpy
cEEEC\{A} pEFEC\{B, E}

+ (ac + b?) Z
TES\(AUB)
X [F,u./zr/w'mav + F,u./.l.rcrvm,u,a']

+ ac Z

cE€EEC\{A} pES\(BUE)

LpoLapmpy

+ ac Z Z Fpa'FO'Vm/Lp
oEEEC\{B} pES\(AUE)

+ ac Z Cpnlluomoy

oc&S\ A

+ac > Tuulomu + 0(0%. (12)
ocS\ B

THE APPROXIMATION ERRORS OF THE
REPULSION INTEGRALS

The charge density matrix Q in the ¢-basis
($1)i=1,.., N,

Q = (d1,...,0n8) (b1,..., Pn),

transforms like one-electron operators into the
Lowdin basis:

’\Q — A—IIZ\QA—I/Z'

Therefore, the one-center matrix elements of { are
given by Egs. (6)—(8) and the two-center elements
by (10)—(12).

The Mulliken approximation for a two-center
matrix element #Q42 in the locally orthogonalized
basis with the term of error w,, (residual charge
density) reads

I
A#B %0 = %[mgf; + 208 + wu.
(13)

Therewith, the charge density matrix in the sym-
metrically orthogonalized basis decomposes to

=10+ dia);zﬂ + Q@ + 03, (14)
The two-electron integrals are to be calculated by
v led) = (0w ()R (2).

Therefore, all integrals containing the residual
charge density w,, can be calculated by employing
a nonapproximative (complete) method. It holds
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that
P(pv|ow) =*(ur|xh)
- —2”—[¢(le1<1<) + ¢ (uy [ AN)]
(15)

and

¢(a’/w I a)KA) = ¢(/~“’ | KkA)

- 1“5,, Pluplkd) +2(wv| k)]

) +¢(uv|AN)]

r;w rk)t

+ =P (up| kk)

+P(wv | ki) + (| AA)
+ 8w | AN). (16)

Let us adopt the notation for the integrals sets
and for the classification from Part IV. A summary
of the classification in three types read as follows:

(i) G44,G4s: NDDO-surviving integrals.
(ii) G4B, G4e,GéB: These integrals contain only
two-center charge distributions.

(it) GAp,Geh. These integrals can be calculated
from a one-center and a two-center charge
distribution.

The NDDO-surviving Integrals

The one- and two-center integrals of the types
G144 or G43 were deduced without applying the
d1agonal—approx1matxon in Part IV. Let us, there-
fore, combine Egs. (6) and (7):

tr’erL‘?/ = t/r\Mﬁlé + dtagM,ﬁﬁ

Hence, the NDDO-surviving integrals are given by

AMuv 1 kd) = (A1) 1100 (02) =
= (rr*Q/w |tr*Qm\)
;—"\K_J

=lappros (.U"’ I KA)

The integral ,,,,+(u? | k1) was already given in
Part IV:

VAL BEC,A=B or
A+ BVu,v EAVYk,AEB

1
a2 approx(lu‘v I K/\) (/-LV I KA.)
X (a® + 4abT,,
+ (6b* + 4ac)I?2 )

3

oES\B

X {a(—z— + C)FKUFW\((/LV | k)

+ (uvA1a)

+ b(a + b)FKa'FaA(/'Lvlo'o')}

2
ocES\A
X {a(—g— + c)FM.F,,,,
X ((upelkd) + (vv|kd)
+ ba + b)

X TyeToloa] KA)}

+ ac(uv| kA)

0= 80 ¥ @+ 1)

o€S\B
=8 Y (@ 4T3
oES\A

+ ac
pEB\[x,A} ¢#ES\B

X [(MV | PA)Fxo'Fcrp
+ (,U'V I Kp)rpaFaA]

+ ac
pEA\(n, v} cES\A

A A A A
(e Qv+ 1t Voo | e Qir + 4101 Qea)

A A A A
+ S:r*Q#leuﬁQm\) F Ot Qe % Q) + (Mull‘Q,UrVIMul/}QKA)J

~
=ty (v | )

= approx(lu’y | KA') + Mu!l(lu‘V I K)‘)
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X [(pv | kM) 4o Ty
+ (MP | K/\)Fpura'v]
+52 > Y (urlpo)lon

CeEC\{B} @.pEC

pFo
Y

> (po | kAT, To,

ceC\{A} o,p&C
pEa

+ 0(¥). (17)

For the error of Mulliken approximation it holds
that

VALBEC,A=B or A% BVu,v €A,
Vk,AE B: (18)

1
E;Mut)}(/i"’ | kA) = (ab + T, (3b* + 2ac))

X[ > Tuol@g, | kA)

a€S\A
+ Fau(w;m' I K)‘)
+ Z Fmr(,u'V I wm\)

sES\B

+ FUA(MV | wl«r)i|

+ bz[ Z Z F#PFW
C,DEC\{4} oEC

c#D" ' pED
X (@po | KA)

+ Z Z er rm\

C,beC\{B} oE€C
C#D pED

X (MIw,w)]

+ ac[ Z | A
C,DEC\{A} 0€EC
Cc#D ~ pED

X (0qy | kA)
+ T Lo (@e, | kA)

t Y 2 Tulw

C,DEC\(B} o€&C
C+D pED

X (uv | @g)
+ T Tpe(ur | w,K)jI

+b* Y

oc€S\A pES\B
X [r;wrkp(wa-v I pr)
+ Fovr:(p (wp.a' I pr)

+ F;wrp/\(wrru | pr)
+ ravaA(wua I pr)]
+ 0(I). (18)

Integrals with Two-center Charge Distribution

Let us first discuss the integrals with two-center
charge distributions in the generalized “bra” and
“ket,” which are G245, G4Z, and G45. The two-center
elements of charge density matrix partition into

A(AB — A(AB A(yAB A(yAB 3

Q;w - tr‘Qp.u + diag‘Q;w + Mull‘Q/.w + O(F )
Thus, the repulsion integrals in the Lowdin basis
read

Muv | kd) = Q45 + diaﬁﬂﬁﬁ

+ it Qs | Qck

+ diaQQE/\D + Mul};Q’g){)) + O(I‘B)
Nine different products arise; they can be further
classified. The integral type G4¢ results from iden-
tifying D and A; for G4, let C = B:

(a) Part of transformation (before applying the
diagonal-approximation exhaustively):

AQAB | A CD
(tr‘Q;w tr‘Q’KA .
(b) Diagonal-approximation:
AOAB| A(OCDY (A()AB| AQCD
Q ldizzg‘Q’ /\)’ (tr‘O’p. |diag‘QK)\ ’

(diag Mmy K v
AOAB | AOCD
(diag‘Q’/w tr‘QKA '

(c) Mulliken approximation:
A(AB | AOCDY (AQAB| AQCD
MuIl‘Q,u.v | Mull‘Q‘KA )’ (rr‘Q;w I Mull‘o'm\ ’

AQAB | AQCD
Mull‘Q‘;w tr‘Q’KA)'

(d) Mixed terms:
A A(yCD
(diag‘o‘ﬁﬁ IMul):‘QE).D)’ (Mull‘Q’ng ldiag‘QgA )
The part of transformation (a) partitions by an

exhaustive application of diagonal-approximation
further:

ANAB| AOCDY A
(tr‘o',u.v trQKA - approx(l"'v | K/\') + Vdiag -

The integrals read
appm",\c(,u,v | kA) = (02/2 + ab)zr,uvrfc}\
X [(pe | kre) + (| AX)
+ (vv k) + (vv|AA)]
+ o(I?). (19)

558

VOL. 53, NO. 5




%%

NEGLECT OF DIATOMIC DIFFERENTIAL OVERLAP. V

The error rg,, is given by

a2
Tdgiag = T'xa E + ab |ab

X [ Z Tpo((ov | k) + (ov]|AX))

ocEB\{»}

¢ 3 ol + )]

o€A\{u}
a2
+ Ty > + ab ab

X [ Y. Tuwlluplo) + (vvlon)

cED\{A}

+ Y FaA((ﬂﬂlKa')‘l"(VVIKU)):I

a€C\{x}

+ (@) Y T

a€B\{»}

X[ Y. Tilovlph)

PED\{A}

+ Z Toalov | Kp)i|

pEC\{x}

+ (@) > T,

o€A\{u}

X[ Y Teluolph)

PED\{A}
+ Z Fp,\(,u,a'llcp)jl + 0(T?). (20)
PEC\{x}

All terms of error of the diagonal-approximation
cancel to the third order because

2 Qs =0+ o),
diay Qs =0 + 0(T"%);
thus,
(iag Q22 | 4 QEP) =0+ oY),
0 g Q) = 0+ 0(T%),
(g Qan | QF) = 0 + O(T).

The error terms that are caused by Mulliken ap-
proximation read

1
z Gratt X5 | st eX) = (a® + 4abT,

+ (d4ac + 6b2)1",2m)

X (w,uu | wKA)

+ (ab + (ac + 36%)T,,)

X [ Z {F/m(wcrv | @ia)
o &S\(AUB)
+ Ftrv(w;w | wa)}

+ Y {Teolwu log)
cES\(CUD)

+ Fa’A(a’/w I wKV)}:|
+ b?
oSEEC\{A} pEFEC\(B,E}
X Fua'rpv(wap | W)

+ b
oE€EEC\[C} pEFEC\{D,E}

X Ty FpA(w/.w l wtrp)

+ ac
o€EEC\{4} pES\(BUE)

X F/x.ara'p(wpv I Wiep)

+ ac
o&EEC\(B} p&€S\(AUE)

X Fpa-ruv(wpp | Wi

+ ac
o€EEC\(C} peS\(DUE)

X To rvp(w/w l U);M)

+ ac
o€EEC\{D} pES\(CUE)

X rpzrrtr)\(w,uu l pr)

+ acl"MLI: Z r,u,o-(wtw I a)m\)

ocES\A

+ Z Fa-v(wﬂa | @)
ocES\B

+ Z rl«r(w,uvlwoA)
ogeS\C

+ Z ra’A(a),uvlwko'):I

aeS\D

+ bz[
#&S\(AUB) pES\(CUD)

X F[LG'FKP (wo'u I wp/\)
+ P(TVFKp(ijT | wp/\)
+ F/J.a-rpz\(wa'v l pr)

+ T'yp F,,A

X (w,uo' l wkp):l

+0(r%), (21)
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1
= GO0 1) = Tl 0w
+ (vl wa)]

2
X[%+ab

+ T,u(2ab + 2ac + 3b2)}

+ (ab + T,,2b%)

X [ Z F;m(””'“’x)«)

o€B\{v}

+ Z F”,,(/LO'I wKA)}
Ak}

+ Z Fp.arml
cES\{AUB)

ab
X [(—2- + ac)
X{(pplon) + (v oawn)}
+ (ab + b?) (o'alwk,\)]

b
+ (% + b2>1“,” 3

o&S\(CUD)
X Teollpmlwon) + (v wea)}
+ I'ga

X {(ppl o) + (07| )}

oty

7€S\(CUD)

X [ z {Fknr;l.a'(o'ylwm\)

o&B\(v}
+ FMF#‘,(G‘V ] wk‘l))}

+ Y {Tenlow

o€A\{u}

X (po | wyy)

+ FnAFa'v(MO' I wkn)}}

+ 0(I?), (22)
1
;; (Mul)}‘Qﬁg I ,ﬁﬂff = rx).[(‘”;w I K'K) + (ll)/w I A/\)]

a2
x —
[2 + ab

+T,,Qab + 2ac + 3b2)]

+ (ab + T,,2b%)

X[ Z Fka'(a)ua'lo')l)

o€D\{A}

+ Y Tolwsl m)}

oe€C\{«}

+ Z rka' Fa’A
eES\(CUD)

X [(% + ac){(wwlmc)
+ (w;w | A/\)} ’

+ (ab + b?) (w;wlov):|

ab
+ (7 + b2>FK,\ Z

aES\(AUB)
X [Tuellwgy | k&) + (@451 AN}
+ Fm/

X {(0u0 | k&) + (@40 | AV}]

+ b2
sES\(AUB)

X I: z F/l.ark'q(wlrv l n/\)

nE€D\{A}
+ FoyTen(@uo | 9A)

+ Z F;urr'qA(wa'v | K'T])
nEC\{x}

+ ra-urnA(w;w l Kﬂ)}
+ o(T?). (23)

Finally, one obtains for the mixed products

1
) (a’ia;\‘Q’ﬁﬁ [MulAlQSAD) = b2
a EEC\4, B}

X Y Tul,,
p,oCE
p#o

X (opleA)
+ Qac + by,
X |: Z Fp,a(a'ylwid)

oeB\{»}

+ Z I‘o'u(,ufo'lwm\)} R

o€A\{u}

+ ac
gES\(AUB)

X[ Z I",WI‘g,,(pVItvnA)

o&B\{r}

+ z prrl-‘(rv(:u'p |wK)\)]

o€A\{u}

+ o(I?), (24)
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1
'a_z' (Mul/}‘Q’ﬁg |diagﬂff) = bz z
EcC\{C,D}

X Y Telm
p,o€E
p#o
X (@ | op)

+ (ac + by,

X [ Y Tel@ulon)

oeb\{A}
+ Z Fa’A(muv | KO')]
a€C\{«}

+ ac
cES\(CUD)

X[ Z rmrra'p(wp,v'p/\)

pEDNA}

+ Z rpo-ro-A(w/w]KP)}

pEC\{x}
+ o). (25)

Now, the two- and three-center integrals of
type (iii), G4 and G344, remain for discussion.
The repulsion integrals are represented by

A — (AQAA A AA A4 | A CD
(,LLV | K’\) - (trQ;w + diag‘Q,u.u + Mull‘Q';w tr‘QK/\
A CD A CD
+ diagQKA + MulleA)
+ o(I?).
Nine products arise; they are classified analogously
to the argumentation above:

(a) Part of transformation (before applying
diagonal-approximation exhaustively):

AQAA | AOCD
(tr‘Q/J.vltr‘Qm\ d

(b) Diagonal-approximation:

A AA AQCDY (A AA AQCD
Q Idiag‘Q’KA v( Q |diag‘Q'm\ )’

(diag wy tro? uy
ANAA | A CD
(diag‘Qp.vltr‘Q'K)t .

(c¢) Mulliken approximation:

AOAA AOCDY (A AA AnCD
(MullQ;w |MullQ'K/\ )’ (tr‘Qy,v |MullQK/\ ’
AOAA | AOCD
(MullQ,uV tr‘Qm\)'
(d) Mixed terms

A AA A CD A AA A CD
(diagO’;w |Mull‘QK)L )’ (Mull‘Q,uV | diag‘QKA .

(The integrals of the type G§i can be obtained
from G£ because of the permutation symmetry of
repulsion integrals.)

Let us first investigate the part of transformation.
For the functions x and » localized at atom A, the
cases u * v and u = v for class (a) have to be
treated differently because of the different appli-
cation of the diagonal-approximation. In the case
u# = v, the justification of the NDDO approximation
in Part IV was not successful. In both cases, the

following partition holds:
tll\"()‘ﬁ?l |t¢QEf) = appro/)\:(ﬂ’y | K)‘) + Tdiag -

The approximative representation of this integral
A(uv | kA) is known from Part IV:

approx
lL.u#v
appmi(uv | k) = a*(@%/2 + ab)Ta
X [(uv | rre) + (pv|AN)]
+ o). (26)
Exhaustive application of diagonal-approximation
on (#0441 A0EP) results in the error rigg:
rdiag/a2 = F;L,u.rrd
X [(uv | kre) + (uv|AN)]
X (2ab + 2ac + 3b?)
+ (ab + 26°T,,)
X [ Z Teo(pvlad)

aED\{A}

+ > Talprl m)]

oc€C\{«}

3

ao€S\(CUD)

X [(ac + %){(,uvlmc) + (uv | AN}

an' ra‘A

+ (ab + b?) ((,uvlo-a')} + o).

(27)
2. u=v:

1 1
a_z'appra)‘x(#'/-" | €A) =a_2 (rﬁnm tﬁQf/{))

= (a*/2 + ab + T,,(Q2ab + 2ac + 3b%))
X Tal(upe | ki) + (pe [ AN)]
+ (ab + 2b7T )
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X[ > Telpplor)

o&D\{A}

+ Y Tolppl Kcr)i|

a€C\{x}

2

og€S\(CUD)

r)co' rm\

X [( + %){Wl:««) + (uae | AN}

+ (ab + bz)(,u.,u.lacr):l + o(I3).

(28)

For this case, one has rgis, = 0 + 0(T®). The errors
introduced by diagonal-approximation are given by

1
E (rﬁﬂﬁﬁ |d.-a§fo) = b? Z

G&C\{C,D}

X Z F/«rrp/\(,u'Vlo'P)

o,pECG
otp

+ (b + 2ac)T,,

X[ > Telprlon

oED\{A}

+ Z Toaluv| Ka')il

geC\{x}

+ ac
seS\(CUD)

X[ > Twlop(urlpd)

PED\(A)

+ Z prraA(MVle):l

pEC\(x}
+ 0(I?, (29)
(diagnzlz l diago‘f)l.)) =0+ 0(I‘3), (30)
(g Qs 1 #QX) = 0+ O(T°). (31
The Mulliken approximation induces

%(Muﬁﬂ,’i‘;lmﬁﬂff = (ab + [,,(36” + 2ac))

X Z {F/.LU'(wG'V | w/c)t)

seS\A
+ Toloue |0}
+ b?
pEEEC\{A} oEFEC\A,E)
X Typlon(@,0 | ©4)

+acz

oc€ES\A pES\A
pFEo

X {F;l.p Fptr(‘”trv I wm\)
+ va Fptr(wtrp. | wx,\)}

+ b?
7€S\(CUD)

X I:Fm:< Z Fuo‘(wa'u | w‘l]/\)

o€ES\A

+ Fo'v(a)/m- | wnA))

+ Fm\( Z ry.(r(wcrv I wm])

o&ES\A

+ Fcru(wp,a' I wm])) j|
+ o), (32)

! ab
22 Ot 1 ) = FKA(E + bz)

X[ Y Tuolwey | ki)

oES\A
+ F,u.a'(wo’v l AA)
+ Fa’v(wy.a' l KK)

+ Fo‘v(wp.a' I A/\)}

+ b2
pED\{A}
X Fxp( Z F,u,a'(wa-vlp’\)
oceS\A
+ I“,,,,(w,,,alp)l))
+ b2
pEC\{«}
X FpA( Z F/J.a'(wavl’(p)
oES\A
+ Fau(wy.a' | Kp))
+ 0(I%), (33)

1
z (&Q/’Z‘} l Mul)}‘Q'E,P) = (uv|wa)

X [a* + 4abTy, + T2, (4ac + 6b%)]

ab
£ 3 {r,u,r,,(ac + —2-)

oES\A
X[(pplow) + (vvlow)
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+ (ab + b%) (00 | 0}
+ (ab + T,,(3b% + ac))
>
oc€S\(CUD)
+ Toaluv | 0o}

+ acrp,p.[ Z an(ll'ylwa)k)
geS\C

Lo (v war)

+ Z ra'A(#'VIwKa')]

o€S\D

+
agEGECNC} pES\(DUG)

X [bzI‘Wl",,,\(,uV I a’a’p)
+ acTuolop (vl ©p)]

+ ac
cEGEC\{D} peS\(CUG)

X rpzrra'z\(/f'V | pr)
+ 0. (34)

One has for the mixed terms
1
—aE (diagﬂﬁﬁ |Mul)2‘0':‘<:)?) = ac(l - 8/“’)

X (uvlow) D,
cES\A
X (T3, + T3,)
+ ac Z z
pEA\(u, ¥} €S\ A
X F,u.a'ra'p(pv I wKA)
+ Fva'r(rp (Plb | wk/\)
+b Y Tule
p, cEEEC\{A}
pFa
X (po | @)
+ o), (35)

(et s | aicg X)) = 0 + O (36)

Numerical Evaluation of
the Error Terms

A numerical evaluation of the “expansive” error
functionals on G, the set of all repulsion integrals in
the ¢-basis, as derived in the last section, permits
a judgment on the quality of the approximative
integral transformations as described in the fourth

paper. Especially, the practicability of Eq. (17) for
the change of basis for the NDDO-surviving integrals
is of interest.

Let us restrict the discussion on the analysis
of the repulsion integrals because application of
NDDO is not justified for one-electron operators
by Part IV. Such integrals have to be calculated
completely and transformed correctly.

A CRITERION OF NORM FOR THE QUALITY
OF APPROXIMATION

The standard for the quality of a simplified
nonempirical quantum chemical computation
method is always the result of the complete
procedure. Often, the ground-state energy serves
as an exclusive standard, but this quantity is
not sufficient for a differentiated analysis of an
approximative method. Moreover, the ground-state
energy seems to be a poor indicator to judge on
integral approximations because of the nonlinear
nature of the self-consistent field procedure.

Therefore, it is more plausible to require a repro-
duction of the repulsion integrals of the nonapprox-
imative method as well as possible. Only “small”
integrals may be approximated by zero. Let M be
a subset of the set of repulsion integrals—maybe,
the integrals of the type G&p. To each integral
(uv | kA) of the set M, an approximation {uv | kA)’
is given. Let M’ be the set of these approximate
integrals. The weighted quadratic mean m (a 2
norm) provides a notion of distance:

1
e (sz

| kA)EM

172
(uv|kd) = (uv| KA)')2) :

(37)

The weighted quadratic mean can also be used to
quantify the (mean) magnitude of a set of integrals:

mo |
m_(IMI WZ

{kA)EM

12
(kv K )l)z) - (38)

CALCULUS OF ERROR FOR SOME
DIATOMIC MOLECULES

For some diatomic molecules, the error func-
tionals shall be evaluated numerically to allow
an estimation of the magnitude of the various
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errors. Therefore, these examples provide a lower
numerical limit for the errors. This lower bound
allows some far-reaching consequences.

Diatomic molecules are preferred since the error
functionals of the section Calculus of Error for the
Integral Transformations are simplified drastically:

1. Yu € S Ty = 0 (by Corollary 2 of the theo-
rem in Part III).

2. All sums like

C,DEC\4} o€C
C#D pPED

vanish if A is an atom of the considered mol-
ecule. The first sum operates first for three-
atomic molecules. For diatomic molecules AB,
the following sums vanish, too:

ey Z and so on.
E€C\{A, B} oES\(AUB)

Therefore, some of the error functionals of the
section The Approximation Errors of the Repulsion
Integrals are of the third order. For the integral
types G&2 (here G42 ), it follows from Egs. (24) and
(25) that

(dia/g\Qﬁﬁ lMulAl‘Q‘ﬁ)lf) =0+ O(FS) ’
Mul)}‘Q,ﬁg Idiagﬂﬁf) =0+ 0(r3)9
and further for G& (here G44) by (29), that

(O] 4an Q) = 0 + o(1?).

The remaining equations are reduced; e.g.,
Eq. (23) for diatomic molecules (C = A,D = B)

becomes

1
a_2 (Mul/)‘o’zf It)r\QSAD) = FKA[(“);AV | KK)

+ (@ [ AX)] (%2 + ab)

+abl: Z Feolwula))

oeD\{A}

+
o&€C\{x}

X Fm\(wa-u I KU):I
+ o(I?).

The calculus of error is most advantageous for
diatomic molecules since for three and more atomic
molecules such simplifications are not possible.
The results for the numerical calculations of
boron nitride (BN), fluorine (F,), and Lithium flu-
oride (LiF) are represented in Tables I-II. An all-
electron minimal basis of Slater functions is utilized
(five atomic orbitals at B, N, F, and two atomic
orbitals at Li); the Slater exponents can be found
in Clementi and Roetti [5]. The program DIATOM
available at QCPE [6] is used for the calculation
of repulsion integrals. Local orthogonalization was
performed utilizing a Schmidt procedure. The bond
distances read dpy = 1.281 A, dep = 1,435 A, and
diip = 1.510 A; the expansion coefficients are cal-
culated by Legendre approximation (see Part ).
The tables provide a comparison of different
integral types: The NDDO-surviving integrals G4
and Ga4 can be found in the first column. The
three following columns describe the integral G244
(general type G&3) distinguished between equal or
different orbitals in the one-center charge distribu-

TABLE |
Repulsion integrals of boron nitride.
Gﬁ AB: (Gé‘g) Gﬁg

Boron nitride (BN) G w=v LE Y MmEY (GLE, G5 All types
Total no. integrals 2500 1000 4000 5000 2500 10,000
Mean ¢-basis:?(uv|xA) 0.14979 0.10436 0.01091 0.04768 0.02266 0.08291
Mean A-basis: *(uv | «A) 0.15042 0.02232 0.00400 0.01060 0.00189 0.07559
Mean o0 (17 | kA) 0.14990 0.06680 0.00193 0.02992 0.00730 —
Mean diagonal-approx. — 0.0 0.01020 0.00912 0.00991 —
Mean Mulliken approx. 0.01135 0.01468 0.00982 0.01096 0.00197 —
Mean mixed terms — 0.00618 0.00585 0.00592 0.0 —
Mean all integral approx. 0.01135 0.01894 0.00651 0.01028 0.01061 0.01064
Mean 2nd-order expansion 0.03404 0.05758 0.00387 0.02598 0.01533 0.02619
564 VOL. 53, NO. 5
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TABLE I
Repulsion integrals of fluorine.
o G, (@) Z:

Fluorine (F,) G p=v LFE Y jrane” (G2, g8 All types
Total no. integrals 2500 1000 4000 5000 2500 10,000
Mean ¢-basis: ¢ (ur | kA) 0.22058 0.04086 0.00386 0.01860 0.00344 0.11108
Mean A-basis: *(uv | kA) 0.22124 0.00771 0.00127 0.00363 0.00036 0.11065
Mean 00 (uw | kA) 0.22100 0.00599 0.00004 0.00268 0.0001 —
Mean diagonal-approx. — 0.0 0.00312 0.00279 0.00053 —
Mean Mulliken approx. 0.00147 0.00424 0.00310 0.00336 0.00028 —
Mean mixed terms — 0.00025 0.00014 0.00017 0.0 —_—
Mean all integral approx. 0.00147 0.00426 0.00122 0.00220 0.00046 0.00173
Mean 2nd-order expansion 0.00033 0.00153 0.00009 0.00069 0.00012 0.00052

tion. In the second to last column, the repulsion
integrals G432 (general types G28, Gﬂg) with only
two-center charge distributions are investigated.
Finally, in the last column, the means on all integral
types are shown. For each integral type, first, the
number of relating integrals and, then, the different
means are given in the rows. The first mean is that
of the integrals in the locally orthogonalized basis
followed by that in the Lowdin basis.

The mean of the integrals ., s(uv|xA) is
given by Egs. (17), (19), (26), or (28), respectively.
The diagonal-approximation is not applied to the
transformation of the NDDO-surviving integrals.
In the remaining cases, the mean of diagonal-
aproximation is calculated by an addition of the
terms rgiqg, (diaﬁQ/.w | dia;QK)t)7 (t}r\ﬂ'y.v Idiaé\nkl\)a and
(iag Qv | #Qr) followed by the computation of
the quadratic mean. Analogously, the means for
the errors due to Mulliken approximation and
the mixed terms can be calculated. The error of
Mulliken approximation of the NDDO-surviving

integrals is determined by (18). The mean of
integral approximation errors is computed by an
addition of the errors that are induced by the
integral approximations for each integral followed
by the calculation of the quadratic mean. (The
proper sequence is essential!)

The error of the second-order expansion in I’
is now the mean of the difference of the cor-
rectly (without approximations) calculated integral
Ay | kA) and the sum of appmi(,u,v | kA) with the
various error terms. Some items in the tables are
not defined and are therefore marked by a dash.

DISCUSSION OF THE RESULTS

At first, it can be seen that integrals with two-
center charge distributions become small in the
symmetrically orthogonalized basis (about of a fac-
tor of 10). This circumstance is already known from
the frequency distribution diagrams of Part IV for
boron nitride. The mean for the integrals of type

TABLE Il
Repulsion integrals of lithium fluoride.
G A3, (GED) 45

Lithium fluorine (LiF) Gas w=v B #E v RZY i, Gop All types
Total no. integrals 841 280 880 1160 400 2401
Mean ¢-basis:®(uv | kA) 0.27232 0.05778 0.00672 0.02898 0.00497 0.16244
Mean A-basis: * (v | kA) 0.27230 0.01531 0.00240 0.00781 0.00059 0.16125
Meanapp,o,ﬁ‘(uv | kA) 0.27273 0.00820 0.00003 0.00403 0.00000 —
Mean diagonal-approx. — 0.0 0.00479 0.00417 0.00070 —
Mean Mulliken approx. 0.00208 0.01047 0.00654 0.00767 0.00044 —
Mean mixed terms — 0.00009 0.00019 0.00017 0.0 —
Mean all integral approx. 0.00208 0.01048 0.00239 0.00555 0.00061 0.00406
Mean 2nd-order expansion 0.00028 0.00244 0.00006 0.00120 0.00007 0.00085
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(iii), i.e., Gén and G4a, does not decrease in the
same manner. The mean magnitude of the NDDO-
surviving integrals does not vary much.

By inspection of the integrals that are neglected
by NDDO, one can see that the mean of the sum
of the integral approximation errors is of about
the magnitude of the mean of the integrals in the
symimetrically orthogonalized basis , o (¥ | €A).
Moreover, the quadratic mean of the second-order
expansion error is about of equal magnitude. There-
fore, the transformations for the approximative rep-
resentation of the integrals with two-center charge
densities are almost useless. But its importance
can be seen in the reproduction of the proportions
of the mean magnitude of the integrals in the
Lowdin basis; this provides the arguments for the
justification of NDDO.

The error of Mulliken approximation is unavoid-
able because it is necessary for the substitution of
two-center charge distributions. Also, diagonal-
approximation produces great errors: The integrals
Gﬁg for w # v are even underestimated, whereas
the error of diagonal-approximation is of the
magnitude of the considered integrals in the
quadratic mean. This verifies the assumption that
the diagonal-approximation serves mainly for a
reduction of the mean magnitude of repulsion
integrals in the Loéwdin basis. The error that
is introduced by the second-order expansion
may be reduced by a polynomial ansatz of
higher degree. But this increases the error caused
by the Mulliken approximation; moreover, the
corresponding equations are expected to be difficult
to handle because of their complexity.

For the NDDO-surviving integrals, the situation
seems to be favorable. These integrals have a
quadratic mean in the ¢- and A-basis that is
greater to orders of magnitude than the mean of
errors. These integrals shall be investigated further:
Let M be the set of NDDO-surviving integrals:
M = G U Gég:

12
s :=<1 D [¢(w|m)—*w|ml2>

|M| (uv | KAEM

12
my = ( ! Z Ezppro.At(MV | KA) _A(MV | K/\):F) .

IMl (ur | kA)EM

The weighted quadratic mean m; describes the
distance of the |M|-dimensional vectors of NDDO-
surviving integrals in the ¢- and A-basis. The
integrals *(uv|«A) are to be calculated by a
nonapproximative method (Table IV).

TABLE IV
Quadratic means my and m, for diatomic
molecules.

my ma
HF 0.011032 0.014082
LiH 0.010667 0.005611
LiF 0.002847 0.002244
BeO 0.005730 0.005396
BN 0.011491 0.041612
CcO 0.012389 0.041914
No 0.013260 0.053946
0, 0.007920 0.014473
Fa 0.002212 0.001616

Let us discuss some of the diatomic molecules:
As above, an all-electron minimal basis of Slater
functions was utilized with single-zeta orbital
coefficients following [5]. The bond distances read
diig = 1595 &, dpeo = 13314, deo = 1128 A,
dan = 1.094 A, doo = 1.207 A and dyp = 0917 A;
and the rest like in the last section.

Therefore, the NDDO-surviving integrals in the
locally orthogonalized basis differ from that in
the Lowdin basis about of the order of 1072 to
107%. But the integrals ,,,.,5 (14 | k1) provide for
the molecules HF, BN, CO, N;, and Oz an of-
ten significantly less accurate result than do the
integrals in the initial ¢-basis (mz > my). In the
remaining cases, only small improvements (m; <
my) are realized. This means that m; and m, are
of about the same order of magnitude as are the
quadratic means of the approximation errors of
the NDDO-surviving integrals. For instance, in the
unfavorable case of boron nitride, the second-order
expansion error of the NDDO-surviving integrals
is 0.03404 (Table I), which is greater than m; =
0.011491; hence, it is responsible for the poor ap-
proximation of ,,,.+(v | kA) with my =~ 0.041692.
For fluorine and lithium fluoride (Tables II and III),
the errors induced by the Mulliken approxima-
tion and the second-order expansion error are each
smaller than m;. Hence, the integrals , (v | k)
represent a better approximation of the integrals in
the Lowdin basis: compare mj.

Therefore, one can agree with the identification
of the NDDO-surviving integrals between the ¢-and
A-basis as proposed by Chandler and Grader and
others (cf. Part IV):

Mpava l kpAg) = ?(uaval KsAs).

An integral scaling constant is available not
only from an expansion of the zeroth degree but

566

VOL.. 53, NO. 5

g

¥ ae

T e




e  w.m

NEGLECT OF DIATOMIC DIFFERENTIAL OVERLAP. V

also from an expansion of first degree, because
by Eq. (17) one obtains for diatomic molecules
(Tpp =0):

appro?c(:u‘y I K/\) = ¢(/~LV | K)‘)a4 + O(FZ) .

TO THE CONCEPT OF A SIMPLIFIED
NONEMPIRICAL COMPUTATION METHOD

The results of Part IV and the calculus of error
can be summarized as follows:

¢ NDDO approximation is not applicable to one-
electron operators (core-integrals). They have
to be calculated completely and then trans-
formed into the Lowdin basis by

AM — A_UZMA_M.

* NDDO is justified by the I'-expansion tech-
nique for the two-electron integrals consist-
ing only of two-electron charge distributions.
These are the types G48.G48, and G428

o The integrals G35 and G44 are to be cal-
culated in the locally orthogonalized basis.
The approximative transformation of these
integrals by the linear mapping (17) into the
Lowdin basis is not recommended due to the
error involved. Due to the analysis in the last
section, identification of the integrals in both
bases seems to be preferable.

o Consideration of the integrals G4 and G434
seems to be essential.

The last point requires further discussion: The two-
and three-center integrals mentioned above are
only insufficiently represented by the 4 (¥ | kA)
as stated in the section Discussion of the Results
and cf. the section Integrals with Two-center
Charge Distribution. Moreover, the different
orders of magnitude (cf. Tables I-IIT) preclude an
identification of the integrals as an easy method
for changing the basis.
Two perspectives can be seen:

1. The integrals G48,G44. G4, and G254 should
be calculated in the locally orthogonalized
basis. All integral transformations of Part IV
are to deduced a second time, but the domain
of the mapping from the ¢- to A-basis consists
of the integrals above instead of the NDDO-
surviving integrals only. All approximative

transformations can then be analyzed by a cal-
culus of error, analogously to the proceeding
described above. One expects a reduced error
due to the Mulliken approximation, but the
error of the second-order expansion remains.
The examples in Tables I-III shows that this
error is of about the same magnitude as the
discussed integrals. Therefore, this solution
does not appear to be promising.

2. In accordance with Brown and Burton {7], one
abandons the concept of the representation of
integrals in the Lowdin basis and works in
the locally orthogonalized basis directly. By
comparison of Figure 4(c) and (d) of Part IV
as well as Table I, one can see that the inte-
grals of types Gég,Gﬂg, and Gﬁg are greater
in the ¢-basis. Some theoretical investigations
still need to be carried out.

Summary and Conclusions

In this series, the justification of the NDDO
approximation was critically reexamined. First,
the I'-expansion technique was developed for the
replacement of the nonconvergent binomial ex-
pansion (S-expansion technique) and the slowly
convergent P-expansion of Chandler and Grader
[3]. This new technique was applied to the
discussion of the examination of the justification
of NDDO approximation. NDDO was not justified for
the core integrals (one-electron operators) but was
partially for the electron repulsion integrals. The
results are summarized in the last section.

The calculus of error shows that the linear inte-
gral transformations of the I'-expansion technique
and the resulting arguments are of only restricted
reliability and applicability. Some errors, due to
the different employed approximations, are of the
order of magnitude of the considered integrals in
the Léwdin basis.

One should understand that the goal, of the
investigations conducted, was to remove the often
found weakness of insufficient control over the
various introduced approximations while develop-
ing and justifying simplified, quantum chemical
computation methods.
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