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Abstract

Multivariate curve resolution (MCR) methods aim at extracting pure component profiles from mixed spectral data

and can be applied to high-dimensional data, e.g., from process spectroscopy or hyperspectral imaging techniques.

One often observes that some parts of this data, namely certain rows and columns of the data matrix, are considered

essential for MCR outcomes, while other parts are of minor importance. Some methods for determining essential

data are known, but all have different disadvantages concerning the application for noisy data. This work presents a

new approach on how to detect the essential information for noisy, experimental spectral data. Active nonnegativity

constraints in combination with duality arguments are the key ingredients for determining essential spectra and fre-

quency channels. The new approach is conceptually simple, computationally cheap and stable with respect to noise.

The algorithm is tested for noisy experimental Raman, UV-Vis and FTIR-SEC data.
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1. Introduction

Modern computerized spectrometers with high time and frequency resolution typically produce high-dimensional

data sets. From this data, multivariate curve resolution (MCR) techniques can extract the underlying pure component

information. This information can be spectral fingerprints characteristic of particular species or even complete pure

component spectra along with their associated concentration profiles [13, 14]. For high-dimensional data, MCR

methods may suffer from many signals with little or no information content. Then dimension reduction techniques are

desirable that enable a separation of the essential parts of the data from the parts of lesser importance. The separation

can speed up subsequent MCR analyses.

Recently, techniques have been introduced for the detection of relevant and essential parts of spectral data sets [21,

5, 18, 6]. Such techniques are applicable after preparatory steps of dimensionality reduction by the singular value

decomposition (SVD, [9]) in combination with a factor ambiguity representation in terms of the area of feasible

solutions (AFS, [7, 19, 25]). The AFS theory deals with geometric objects as inner and outer polygons [15, 3, 17]

which implement the constraints for the existence of nonnegative pure component factorizations.

For spectral data with a low noise level or for model data, those spectra/frequency channels (as represented by the

rows/columns of the spectral data matrix) are considered to be essential which are related to the vertices of the

inner polygons (polyhedra). The essential vertices of the inner polyhedra are related to the essential spectra and

the essential frequency channels, respectively. The remaining data representing points of the inner polyhedron do

not have an impact on the factor ambiguity. In this way, a reduction of the spectral data matrix to the essential

rows/columns preserves the information content of the original matrix with respect to the pure components. The

key role of these vertices can easily be understood as follows: The relative positions of the vertices of the inner

polyhedron being embedded in the outer polyhedron determine the potential factor ambiguity within the geometric

Borgen plot construction. In other words, the shape of these polyhedra restricts the possible Borgen triangles/simplices

[10, 17, 20].

Unfortunately, the inner polyhedra are well-known to be sensitive to noise. For noisy data some of the vertices of these

polyhedra can be scattered across the abstract space, even distant to their positions in the noise-free case. This finding

can easily be verified by studying model problems with and without noise. Sometimes, in the case of (small) negative

data entries, the inner polyhedron can even intersect the boundary of the outer polyhedron; we present an example in

Section 3. Then an AFS construction is impossible. The remedy is as follows: In a first step, the outer polyhedron
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Figure 1: A chromatographic model problem illustrating data essentiality by the vertices of the inner polygon. Homoscedastic, zero-mean and

low-level noise with standard deviation 10−3 has been added. The two upper plots show the elution profiles, the pure component spectra and the

mixed data. The two lower plots show the associated low-dimensional data representations in the U- and V-spaces. The vertices of the inner

polygons are marked by red stars.

is constructed, and this construction is known to be stable even for noisy data and also for data with small negative

entries. In a second step, the inner polyhedron is constructed by means of duality arguments on the basis of the already

known outer polyhedron. This construction results in a more reliable inner polygon construction. In the noise-free

case the new approach coincides with vertex detection. The core of this paper is to compute essential information

avoiding a direct evaluation of the inner polyhedron by using the outer polyhedron with its improved stability and

duality. This work suggests a fast computational approach for finding the essential parts of spectral data sets which

avoids multiple and costly computations of the outer polyhedron as used in our former work [21]. Moreover, the new

approach is applicable to chemical systems with an arbitrary number of chemical species.

1.1. Existing approaches for noisy data and their limitations

The following strategies have been investigated for the detection of essential spectral information.

1. The approach [21] finds so-called relevant spectral information by multiple outer polygon computations by

using inverse polygon inflation. The suggested algorithm is stable for noisy data even in the presence of small

negative entries. However, the method is restricted to data sets including not more than three chemical species.

Its computing time grows quadratically in the dimension of the input data due to the high number of internal

outer polygon computations and subsequent comparison operations.

2. The aforementioned restriction to systems with three species at most can be bypassed if the approach [21]

is applied to a low-rank approximation of the data set spanned by the three dominant singular values and

the associated singular vectors. Such a projection technique has the disadvantage that potentially important

information of the non-reduced spectral mixture data is not taken into account.

3. The approach presented in [5, 18] suggests to continue the usage of the vertices of the inner polyhedra for

indicating the essential spectra also for noisy data. If all entries of the spectral mixture data matrix are far

away from zero, then this detection of essential information is stable also in the presence of noise. However,

absorption values close to zero (after subtraction of background signals) may result in a wrong detection of the

essential information, since then the inner polyhedron is susceptible to interference.

These three techniques to identify essential spectral information have specific advantages, disadvantages and limita-

tions. Next we apply these techniques to two data sets and critically discuss the results.
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Figure 2: Comparison of essential data analyses for the chromatographic data set as introduced in Sec. 1.1. Essential parts of the spectral data are

marked green within the absorption data grid (gray). Top row: Results for noise-free data. Some, but not all regions of dominant absorption are

marked green. These regions are considered as essential in the noise-free case. 2nd row: Results by approach 3 for noisy data. This approach

uses the vertices of the inner polygons for the detection of essential data. The results suffer from small negative entries; none of the major peaks

is marked as essential. Bottom: The new approach finds active nonnegativity constraints in a first step. These active constraints are marked by

colored lines (blue and red) in the two AFS plots. In a second step, duality allows to conclude from active constraints to the associated dual data

points which are marked by blue and red circles. The green areas in the data plot (bottom, right) indicate that the areas of dominant absorption are

determined as essential. Left and centered columns: For all analyses the detected essential data points and the dual active nonnegativity constraints

are marked in red and blue. If data does not correlate to active nonnegativity constraints, then it is marked by gray lines and circles in the U- and

V-space.
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Figure 3: An experimental, noisy Raman data set of an oil-in-water emulsion with four (s = 4) chemical species. Left: The data representatives in U-

space are marked by gray circles for the measured data after background subtraction. The vertices of the 3D inner polyhedron are marked by green

stars. Small negative matrix elements are responsible for relatively large expansion coefficients, see the axes values. Center: Data representatives

in the U-space after truncation of all negative entries in D. Then all expansion coefficients are much smaller (as all data is representable within

the outer polyhedron). Again, the vertices of the inner polyhedron are plotted by red stars. Right: The series of spectra (black, only every 10th

spectrum plotted). All frequency channels that are associated with vertices (red stars) of the inner polyhedron are marked by vertical red lines.

Some frequency channels with dominant signals seem to be detected in a correct way, whereas other dominant peaks do not belong to essential

frequency channels.
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1. First, we consider a chromatographic model problem with s = 3 chemical components. Its elution profiles are

modeled as shifted Gaussians. We add normal distributed, homoscedastic zero-mean noise with the standard

deviation 10−3. Thus the noise level is rather low. After noise addition all negative entries of D are truncated

to zero. Fig. 1 shows the elution and spectral profiles and their low-dimensional representations in the U- and

V-space. The vertices of the inner polygons are marked by red stars. We observe that the essential information

detection in V-space is not stable since the essential information for noisy data is very different from the essential

parts for the noise-free data. The reason is that due to the form of the elution profiles for several of the measured

spectra all absorption values are close to zero. For close-zero rows of D the impact of homoscedastic noise is

relatively large and this does also hold for the data representatives in the U- and V-spaces. Fig. 2 illustrates for

this data set the essential data analysis by approaches 1 and 3 for the noise-free case (top row of plots) and after

noise addition. The second row of Fig. 2 shows the results of an application of approach 1 where the essential

(green) regions do not relate to regions of major absorbance, but to regions with small, even negative data

components. The criteria on essentiality sensitively respond to these small entries. This indicates a potential

weakness of this approach. In contrast to this, approach 3 extracts for the same noisy data essential data regions

which correlate much better to the major absorbing regions.

2. Second, we consider an experimental Raman hyperspectral image of an oil-in-water emulsion from [5] with

k = 3600 spectra and n = 253 spectral channels. A detailed analysis of this data set is contained in Sec. 4.2.

Negative entries in the data are truncated, otherwise the results are even worse. We assume s = 4 species for this

data set. The associated data representing points which span an inner 3D polyhedron in the U-space are plotted

in Fig. 3. Again, approach 3 determines the vertices of the inner polyhedra. The detected essential frequency

channels are marked by red stars in the U-space and also by red lines in the plot of the Raman spectra. The

results are inconsistent. Some frequency channels are correctly detected and others that seem to belong to the

essential data are omitted. We do not state a one-to-one relation of dominant signals and essential data.

The found inconsistencies justify a revised study of the data essentiality criteria for noisy data.

1.2. Contents and organisation of the paper

This work presents a new approach for a stable and computationally fast detection of essential spectra and frequency

channels in noisy spectral mixture data. The method is applicable to chemical systems with any number of chemi-

cal species. The key ingredient of this method is the identification of active nonnegativity constraints. These active

nonnegativity constraints, which determine the shape of the outer polyhedron, are related by duality arguments to the

essential vertices of the inner polyhedron. As vertices of the inner polyhedron determine essential spectral informa-

tion, the analysis can be restricted to active nonnegativity constraints. Throughout the paper we compare the results

for the new algorithm with the ones for approach 3 from Sec. 1.1. In some situations the results coincide and in others

the results differ.

The paper is organized as follows: Sec. 2 reviews the theory of low-dimensional representations in the spaces of left

and right singular vectors and explains the duality between inner and outer polyhedra. In Sec. 3 we discuss an approach

of how to work with noise and small negative entries in MCR factorizations and introduce the new approach to identify

essential information of a data set. Finally, Sec. 4 presents results for experimental IR data, spectroelectrochemical

data and hyperspectral imaging Raman data. We also discuss approximation methods which work with low-rank

approximations of the full data matrix by artificially setting s smaller than the number of anticipated chemical species.

2. A geometric approach to the essential spectral information

Let D ∈ R
k×n be the spectral data matrix with k being the number of spectra (samples) and n the number of spectral

channels. The number of anticipated, independent chemical species is denoted by s. Then the truncated SVD of D

reads UΣVT where the s columns of the k× s matrix U and the n× s matrix V contain the left and right singular vectors

of D which correspond to the s largest singular values of D. The multivariate curve resolution problem (MCR) aims at

computing a chemically interpretable, approximate factorization D ≈ CS T. Therein, C is the matrix of concentration

profiles along the time axis, and S is the matrix of the associated pure component spectra. These factors can be

represented in terms of an invertible s × s matrix T of expansion coefficients so that [13, 14]

C = UΣT−1, S T = TVT. (1)

This factorization has an inherent factor ambiguity, which is also called a rotational ambiguity, see [28, 25] and others.
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Essential spectral information is deeply connected with the factor ambiguity. Whenever spectral information reduces

the factor ambiguity, then this information is considered to be essential [21, 5]. Ideally, the spectral information is

so strong that only a single (aside from scaling) factorization exists. Continua of possible factorizations exist in most

cases. This is the reason why we are seeking for criteria based on the structure of the spectral data which can reduce

the factor ambiguity. Next we discuss certain geometric objects which determine the factor ambiguity.

2.1. Inner and outer polyhedra

Pairs of an inner and outer polyhedron each for the factors C and S are the key objects for determining the factor

ambiguity of an MCR problem, see for instance [7, 19, 25]. For systems with s chemical species the polyhedra lie

in an (s − 1)-dimensional space. Next we discuss the polyhedra for the factor S . First, there is an outer polyhedron

which reads in the noise-free case

F =
{

x ∈ Rs−1 : (1, xT)VT ≥ 0
}

.

In words, the polyhedron represents all points x so that a = (1, xT)VT is a componentwise nonnegative vector. Any

feasible spectral profile must be nonnegative, and hence, the associated x must be located in F . A second inner

polyhedron I is the convex hull of the data representing vectors

ai =
(DV)T(2 : s, i))

(DV)i1

=
(UΣ)T(2 : s, i)

(UΣ)i1

, i = 1, . . . , k. (2)

Thus the ai ∈ R
s−1 are the representatives of the measured spectra (namely the rows of D) in the V-space since ai can

also be written in the form

ai =
eT

i
D[32, . . . , 3s]

eT

i
D31

where ei is the ith standard basis vector in the k-dimensional space and 31, . . . 3s are the right singular vectors. The

outer polyhedron encloses the inner polyhedron in the sense of the set enclosureI ⊂ F . The inner and outer polyhedra

for factor C are similarly defined or are accessible by applying the definitions above to the transposed spectral data

matrix DT. We refer to [20, 25] for their explicit definitions.

A pair of an inner and and outer polyhedron determines the factorization ambiguity of the associated factor. The

key property is as follows: the s vertices of any simplex in the (s − 1)-dimensional space which encloses the inner

polyhedron and which is enclosed in the outer polyhedron determine the feasible profiles of the s chemical species.

This leads to the definition of the AFS being the set of all vectors in the U- or V-space whose corresponding spectral

or concentration profile can be extended to a complete nonnegative factorization D = CS T with C, S ≥ 0. As the

factorization problem involves two factors, there are two AFS-sets, one for each factor. A further prominent global

approach for describing the factor ambiguity consists of the computation of band boundaries by minimizing and

maximizing the signal contribution function [4, 27].

2.2. Noise-free data and essential spectral information

For high-dimensional data, the question arises which measurements (entries of D) are important with respect to the

extent of the factor ambiguity and which are not. Independently, in [5] and [21], the terms essential and relevant

have been introduced in order to categorize certain spectra or frequency channels in this sense. Here we use the term

essential. However, the new approach differs from [5] in a sense that it focuses on active constraints of the dual factor.

Definition 2.1. For noise-free data a spectrum or a frequency channel and its representing point in the U- or V-space

are called essential if its addition or removal has an impact on the shape of the respective outer polyhedron. Then this

data point is a vertex of the inner polyhedron. Otherwise, the point is called non-essential.

The identification of the essential parts of the spectral data is based on the duality between the inner and outer poly-

hedra [10, 17, 20, 22]. In particular, the vertices of one inner polyhedron are dual to the facets of the other outer

polyhedron. Fig. 4 illustrates the duality relation of a vertex (namely the data point according to channel 39) of the

inner polygon in the U-space to its dual line touching the outer polygon in the V-space. We use the first data set as

introduced in Sec. 1.1 without noise. The figure also shows the feasible profiles attaining the value 0 at ν39 as minimal

entry, which corresponds to an active nonnegativity constraint. Computation of profiles using active constraints for

certain channels has also been proposed in [16].
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line belongs to channel 39 and represents an active constraint. Its line segment touching the outer polygon is drawn bold and red. Right: Spectral

profiles belonging to the bold red line segment. Each profile is zero at ν39 since the constraint is active, thus (5) is fulfilled.

For noise-free data it is simple to check the essentiality of a measured spectrum or a frequency channel. The first step

is a computation of the inner polyhedron of the factor C by evaluating the convex hull of the vectors (2) representing

the rows of D. See [20, 25] for the analog vectors in the case of the factor S where the columns of D are considered.

In MatLab a convex hull computation is possible with the routine convhull. Finally, a spectrum D(i, :) is essential if

and only if the data representing vector ai is a vertex of I. Further, a frequency channel is essential if and only if its

low-dimensional representation is a vertex of the inner polygon in the U-space [21, 5, 18].

2.3. Noisy data, essential spectral information and low-rank approximations

We subsume under the term data points the representing points in the U- or V-plane of the spectra (rows of D)

or frequency channels (columns of D). For noisy data we consider very different processes to classify data points

as essential or non-essential. In an analogous way the classifications in terms of relevance in [5] and [21] are the

same for noise-free data and are different for noisy data. In [5] the vertices of the inner polygons are taken in a

straightforward way as the essential data points. In contrast to this, [21] additionally applies a routine based on the

relative consideration of errors as in the polygon inflation algorithm.

Definition 2.2. For noisy data a spectrum or a frequency channel is called essential if its addition or removal has an

impact on the generalized outer polygon whose definition relies on the weakened nonnegativity constraints (3). The

associated data point is also called essential.

Remark 2.3. For noisy data it is difficult to speak of a “correct” or “wrong” classification of data points as the crite-

ria which are introduced for noise-free data cannot directly be applied to noisy data. Depending on the classification

method certain intermediate steps must be applied in order to form an approximate setup to which the classification

criteria can be applied. Hence, referring to correct or wrong classification for noisy data should always be combined

with a reference to the classification method.

We have already shown that approaches 1 (due to the large number of k + n + 2 outer polygons which are to be

computed) and 3 have some disadvantages. Next, Theorem 2.4 points out the projection-based approach 2 can also

miss essential data points.

Theorem 2.4. Let F be the outer and I the inner polyhedron in the (s−1)-dimensional space of a spectral data matrix

D with the rank s. Further let F ′ and I′ be the outer and inner polyhedron with respect to the rank-m approximation

D′ of D with m < s. (See Sec. 2.4.2 of [9] for SVD-based low-rank approximations.)

Then it holds that:

1. The set of coordinates of the outer polyhedron F ′ with respect to the low-rank approximation after coordinate-

wise extension by s − m zeros equals the intersection of the set of coordinates of the initial polyhedron F with

the (m − 1)-dimensional linear subspaceH = {x ∈ Rs−1 : xm = . . . = xs−1 = 0}.

2. The inner polyhedron I′ with respect to the reduced basis (and after coordinate-wise extension by zeros) equals

the projection of I onH .

Proof. For 1.: The outer polyhedron with respect to the reduced basis spanned by m singular vectors reads

F ′ =
{

z ∈ Rm−1 : (1, zT)(V(:, 1 : m))T ≥ 0
}

.
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Figure 5: Graphical illustration of the items 1 and 2 of Thm. 2.4 for the case of three species so that s = 3. Then outer and the inner polygon

are two-dimensional. If only two left and right singular vectors belonging to the two dominant singular values are used, then the outer polygon

F ′ is the intersection of F with H = {x ∈ R
2 : x2 = 0} (the x2-axis) namely the bold, blue, horizontal line. In contrast to this construction by

intersection, the inner polygon I′ is the projection of I to H reduced to its first coordinate.

Thus F ′ is the intersection (and not the projection) of the two sets of the outer polyhedronF andH . Fig. 5 illustrates

this.

For 2.: The inner polygon I′ is the convex hull of the vectors

a′i =
(DV)T(2 : m, i))

(DV)i1

, i = 1, . . . , k.

Therein the vector a′
i

is the representation of the ith row of D with respect to the first m singular vectors. Thus a′
i

is

the projection of ai to the linear subspaceH . Consequently, the convex hull I′ of all vectors a′
i

is the projection of I

onH , see Fig. 5.

3. Stable detection of essential data points for noisy data by soft constraints and duality

For noisy data the direct convex hull computation of the inner polyhedron is known to be unstable so that a subsequent

AFS computation in the U- and V-space may become impossible. Fig. 6 shows a typical example for which the inner

polygon intersects the boundary of the outer polygon. Our strategy is to avoid a direct computation of the inner

and outer polygons (or polyhedra) by hard constraints. Instead, the outer polygons are constructed by using soft

nonnegativity constraints, which allow small negative entries. Subsequently the inner polyhedra are computed by

means of duality-based techniques as dual objects to the soft-constrained outer polyhedra. Algorithms as inverse

polygon inflation for s = 3 and ray casting for any s ≥ 2 work very well in order to approximate the outer polyhedra

in the presence of noise [23, 24]. The idea is to detect which frequency channels/spectra are associated with active

constraints in the outer polyhedron construction and which belong to inactive constraints. Duality theory predicts

that active constraints of one outer polyhedron correspond to the vertices of the dual inner polyhedron [22, 21]. The

suggested approach is different to [21], much faster and applicable to chemical systems with any number of chemical

species.

3.1. MCR factorizations in the presence of noise

The MCR problem for noise-free data deals with the computation of the strictly nonnegative factors C and S so that

D = CS T. For noisy data various approaches are available to compute reliable approximate pure component factor-

izations. One approach is to compute strictly nonnegative factors C+ and S + but to accept approximate factorizations

of the form
∥

∥

∥D − C+S T

+

∥

∥

∥ < ε where ε is a small positive control parameter. Computational implementations of this

approximate-factorization approach can use the nonnegative least squares algorithm in order to calculate approximate

factors C+ and S +. Alternatively, we can use the SVD factorization by Eq. (1) which is combined with a subsequent

truncation of all negative matrix elements [8]. For noisy data or after background subtraction it is more appropriate

7
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information.

to accept small negative matrix elements of C and S whose size can be bounded in terms of the following relative

measures

min C(:, i)

max
∣

∣

∣C(:, i)
∣

∣

∣

≥ −ε,
min S (:, i)

max
∣

∣

∣S (:, i)
∣

∣

∣

≥ −ε (3)

for i = 1, . . . , s. Again, ε is a small positive control parameter. These weakened nonnegativity constraints can be

combined with other penalty functions and can jointly be enforced by a numerical optimization process. In words, a

factorization is accepted if for each profile the absolute value of the smallest (negative) entry is not greater than ε times

the maximum of the entire profile. The polygon inflation algorithm [23], the ray casting method [24] and the dual

Borgen plot construction [20, 22] work with this approach. In all these cases the factors C and S are represented as

in Eq. (1). Fig. 6 illustrates how these weakened nonnegativity constraints work. With hard nonnegativity constraints,

the inner polygon leaves the outer polygon in the left plot, and some hard nonnegativity constraints intersect the inner

polygon (right plot). Feasible factors do not exist. In contrast to this, soft nonnegativity constraints together with a

duality-based inner polygon construction allow ranges of feasible solutions.

3.2. Detection of active constraints

Next we pursue the goal of identifying those spectra and frequencies that represent active constraints of the outer

polyhedra. We focus on the outer polyhedron in the V-space and compute essential frequency channels. The process

can easily be adapted to the outer polyhedron in the U-space for detecting essential spectra. See Fig. 7 for a graphical

representation of these relations.

LetF be the noisy data approximation of the outer polyhedron of the factor S according to (3). Further let F ∈ RN×(s−1)

be the matrix which comprises an N-point sampling of F containing row-wise a list of N sampling boundary points.
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Then the jth row x( j) = (F( j, :))T of F represents the associated spectral profile

a( j) =
(

1, (x( j))T
)

VT. (4)

As x( j) is an element of the outer polyhedron, namely x( j) ∈ FS , it holds componentwise that a( j)/max |a( j)| ≥ −ε.

Since x( j) is located on the surface of F , equality is attained at least in one component of the last inequality so that

minℓ(a
( j)

ℓ
)

max |a( j)|
= −ε. (5)

Typically, x( j) is only an approximation to a boundary point. Further, (5) holds only in an approximate manner with

respect to the precision as used for the computation of x( j). If (5) is attained in an index ℓ, then ℓ belongs to a facet of

F . Thus the associated restriction is active and the frequency channel ℓ is essential. For a certain x( j) equality (5) can

be fulfilled for more than a single index within the given precision of the approximation. All such active constraints

are collected in a set, see the next subsection. If the surface has been scanned sufficiently well, then a subset of all

sampled points x( j), j = 1, . . . ,N, is the desired list of essential indices and frequency channels.

3.3. Numerical precision of the boundary approximation

The surface sampling (by inverse polygon inflation as in FACPACK [24] or by ray casting if more than three chemical

species are expected) results in a discrete mesh of points x( j), which are all numerical approximations of the pre-

cise surface, since the iterative optimization includes some termination criteria. The optimization is built around the

simple and very stable bisection method. Due to the finite precision termination criteria we cannot expect that numer-

ically computed points x( j) fulfill (5) exactly or to be located exactly on the surface of the polyhedra. The suggested

numerically stable algorithm classifies a certain index ℓ ∈ {1, . . . , n} to be essential if

a
( j)

ℓ

max |a( j)|
≤ −ε + δbnd (6)

for a given proper control parameter δbnd > 0. We suggest to use δbnd = 1.01
∣

∣

∣

∣

min(a( j))

max(a( j))

∣

∣

∣

∣

. Finally, for each boundary

point index j ∈ {1, . . . ,N} we compute the set of associated active constraint indexes

I( j) =
{

ℓ : inequality (6) is fulfilled for ℓ
}

. (7)

This is the set of essential frequency channels and is, by definition, a subset of the set {1, . . . , n} of all frequency

channel indexes.

3.4. Index in which a profile takes its maximum is also essential

The evaluation criterion (6) works with relative measures based on normalized profiles. This normalization is a

necessary intermediate step to work with noisy data. We have observed that the index in which the profile a( j) takes its

componentwise absolute maximum max |a( j)| can also belong to an essential spectrum or frequency channel. Skipping

such an index ℓ with ℓ = arg max |a( j)| would move x( j) to the outside of F and then ℓ would gain essentiality. Hence

we define a final set of essential indexes as the union of all sets I( j) by (7) together with the indexes in which the

maxima are taken and written as arg max
∣

∣

∣a( j)
∣

∣

∣. So we get

M =

N
⋃

j=1

(

I( j) ∪ arg max
∣

∣

∣a( j)
∣

∣

∣

)

.

3.5. Application to the chromatographic model problem

We determine the essential information for the chromatographic model problem as presented in the introduction, see

also Fig. 1. The two left plots of Fig. 8 show the U- and V-space representations of the detected essential data points

for the threshold value ε = 10−3. In contrast to a straightforward usage of the vertices of the inner polygons the

duality-based outer polyhedron strategy does not select data points corresponding to noisy spectra/frequency channels

close to the zero vector; compare with Fig. 1 and Fig. 8. However, the set of detected essential data points could be

smaller. In other words, several data points are classified as essential although they are clearly not close to any vertices
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Figure 8: Two left plots: Essential data points (marked by red stars) in the U- and the V-space for the model problem as introduced in the

introduction and shown in Fig. 1. The essential data points are detected by the active constraints strategy based on the dual outer polygons and for

the threshold value ε = 2·10−3 . The essential data points are located on smooth curves, some of them seem to have no impact on the inner polygon.

In contrast to Fig. 1 no outliers indicate poor or even wrong classifications. Center and right: The inappropriate settings ε = 10−6 (too small) and

ε = 0.2 (too large) result in data point classifications (blue) being either too sensitive (two centered plots) or too coarse (two right plots).

of the inner polygons. We consider this as a compromise made in order to avoid wrong classifications or a loss of

information. The centered and right plots in Fig. 1 show how a too small or a too large setting of the threshold value

ε can affect the results, namely with a sensitivity that is too large or too small.

We use the control parameter ε = 2.5 · 10−3 in response to homoscedastic and normal distributed noise with the mean

value 0 and a standard deviation of 10−3. Thus, statistically 99.4% of the noise values are larger than −2.5 · 10−3 and

98.76% of the absolute noise values are smaller than ε = 2.5 · 10−3. The setting ε = 10−3 = σ appears to be too small

since statistically only 15.87% of the noise-values would be smaller than ε.

3.6. Computational efficiency and numerical stability

The advantages of the suggested classification procedure are its efficiency and stability. The algorithm works with

discrete approximations of the outer polyhedra in terms of surface samplings. We expect that the computational

costs for increasing the surface resolution (number of points on the surface of the polyhedra) and for increasing the

precision of the boundary approximation (distance to the true boundary) increases only linearly in the number of

chemical species s.

4. Numerical studies

We apply the procedure for the identification of essential frequency channels and spectra to various experimental IR

and UV-Vis data sets and also process and imaging data. A suitable setting of the number s of singular vectors which

are considered for the computation (of the (s − 1)-dimensional polyhedra) is crucial for a reliable identification of the

essential spectral information. Next we test different parameter settings of s and of the control parameter ε according

to (3) and compare the results concerning the identified essential frequency channels and spectra.

4.1. Chemical image data for a three-component system

The FTIR hyperspectral imaging data set was obtained by analyzing a three-component (s = 3) pharmaceutical

powder composed of acetic acid, acetylsalicylic acid and caffeine, see [11, 5] for more details on the data. The pixel

size was set at 25 x 25 µm and 32 scans were accumulated per spectral pixel. Only the fingerprint frequency range

675−1800 cm−1 for the spectral measurements was selected for data analysis. The data is stored in an M ∈ R36×36×583
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Figure 9: Analysis of experimental FTIR hyperspectral imaging data as introduced in Sec. 4.1. Upper plots: The data points are plotted in gray

(all) and red (essential ones) in the U- and V-plane. The approximations of the outer polygons assuming noisy data conditions are drawn in blue

and their associated dual inner polygons are drawn in purple. The control parameters are εC = 0.035 and εS = 0.05 and the precision for the

boundary approximation in the polygon inflation algorithm is εb = 10−6 . The inner polygons are true subsets of the convex hulls of the data points

since the control parameters shift the facets into the direction of the origin. However, many data points are outside the inner polygons. Lower

plots: All spectra are drawn in black. The left plot shows the essential spectra (k∗ = 19 out of k = 1296) in red. The right plot marks the essential

wavenumbers (n∗ = 51 out of n = 583) by vertical red lines.

field with M(i, j, :) being the measurements at the coordinates (xi, y j). Hence, the data sets includes k = 36×36 = 1296

spectra.

The algorithm for identifying essential spectra/frequency channels uses the parameters εC = 0.035 for factor C and

εS = 0.05 for factor S , see Eqns. (3) and (6). Fig. 9 shows the results. The detected essential data points are drawn

in red, and the approximations of the outer (by inverse polygon inflation) and inner (by duality) polygons are drawn

in blue/purple. Obviously, the essential spectra are neither a subset nor a superset of the convex hull of the vertices of

the data points in the U- and V-space. The results appear to be consistent. In Fig. 9 the outlying essential data points

are close to the boundaries of the respective polygons.

The impact of the control parameter settings for εC and εS on the outer polyhedra is illustrated in Fig. 10. For this

purpose we mark the essential spectra indexes versus varying εC and also mark the essential frequency channels versus

varying εS . The rule of thumb is as follows: With increasing parameter values, which allows for larger portions of

negative entries, more parts of the spectral data are considered to be essential.

4.2. Chemical image data with more than three components

We consider Raman hyperspectral image data of an oil-in-water emulsion, see [5] for more details on this data. The

sample consists of an emulsion base whose full chemical composition is complex and was originally described in [1].

Chemical interpretation and estimation of the number of components is further complicated by chemical interactions

and physical changes occurring during the analysis of the mixture. The analyzed image consists of 60 × 60 pixels, so

k = 3600, and n = 253 spectral channels in the range between 950 and 1800 cm−1. Fig. 11 shows the data, its first

30 singular values and the first left singular vector. For the following analysis the control parameters εC = 0.075 and

εS = 0.025 are used to bound negative entries in C and S according to (3). Due to noise around 21.2% of the entries
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Figure 11: Raman hyperspectral image data as described in Sec. 4.2. The series of spectra (left), the first 30 singular values (center) and the first left

singular vector (right). The curve of singular values does not clearly indicate the number of absorbing species (center plot) and the concentration

values are not evenly distributed (right plot).

in the data matrix are negative after background subtraction. We do not remove negative entries from the data for the

application of the essential data point analysis (in contrast to the procedure generating the plots in Fig. 3).

This data set suffers from spectral regions with minor absorption. Fig. 3 shows the low-dimensional U-space repre-

sentation of the data together with the vertices of the inner polyhedron and their associated frequency channels. These

results represent a partially doubtful and incomplete classification of the essential frequency channels (vertical red

lines in Fig. 3). Several major peaks are not classified as essential. In contrast to this, the new algorithm based on

the approximation of the outer polyhedron by means of soft nonnegativity constraints in combination with an active

constraint detection and duality works in a better way. A number of n∗ = 18 frequencies is detected as essential which

includes all major peaks, see Fig. 12.

4.2.1. Projection to subsystems with fewer species

Option 2 in the introductory section suggests applying a projection approach for determining essential spectral infor-

mation. For this purpose we consider the low-rank approximation of the spectral data matrix with the rank s = 3 or

s = 4 even if one knows that the system involves more species. We test this strategy for the given Raman hyperspectral

image data set of the oil-in-water emulsion. We cannot determine the true number of chemical species, take s = 4

intermediately as the number of species for this data set and analyze the rank-3 SVD approximation of the data set.

Fig. 13 shows the data points in the 3D V-space of the original data by gray circles. This representation relates to the

usage of four dominant singular values/vectors. For the rank-3 approximation of this data set we mark all essential

data points with respect to s = 3 in the left subplot of Fig. 13 by red stars. The right plot shows all essential data

points with respect to s = 4 by red stars. Obviously, many of these points are not located in the bottom plane; they

have a clearly nonzero third component. This reveals a significant disadvantage of working with a number s that is too

small since many essential data points are not detected. By a projection to the x1-x2-plane any information from the

third coordinate x3 gets lost (left plot). We state that the extracted essential information using s = 4 (right plot) covers
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The latter approach is related to the hard constraints C, S ≥ 0.

-0.2

0

0.6

0.2

0.40.4

0.4

0.2

0.6

0.2 0
-0.20

-0.4
x1

x2

x 3

Essential data points of rank-(s = 3) approximation

-0.2

0

0.6

0.2

0.40.4

0.4

0.2

0.6

0.2 0
-0.20

-0.4
x1

x2

x 3

Essential data points with s = 4

Figure 13: These two plots show the data representing points in the V-space by gray circles for the Raman hyperspectral image data introduced in

Sec. 4.2. In the left plot we mark by red stars the essential data points which are found by a rank-3 approximation of the spectral data matrix again.

The right plot shows the essential data points of the original data. Obviously, the projection of the data to s = 3 is far from being capable to capture

all essential spectra.

all essential data points (inner polygon) and that these results are stable with respect to perturbations. If we denote by

essC,s the set of essential frequency channels computed with a rank-s approximation of the spectral data set and essS ,s

the analog set of essential spectra, then we observe for the given data the (approximate) set enclosure relations

essC,3 ⊂ essC,4 and essS ,3 ⊂ essS ,4

except for one element each related to the factors S and C.

4.2.2. Stepwise increasing the number of assumed species and analysis of essential information

Next we increase s and re-compute the essential data points. The plot of the singular values for this data set in Fig. 11

does not clearly indicate the number of absorbing species. Checking the left singular vectors (as this is done for U(:, 1)

in the right plot of Fig. 11) suggests that only the first seven of them appear to have a non-oscillatory character and

therefore potentially contain chemically relevant information. We compute the essential spectral information for s = 3

up to s = 6. See Fig. 14 for the results. The two left plots show the essential spectra indexes and the essential spectral

channels for the different settings of s marked by crosses. By stepwise increasing s we observe that the set of essential

indexes is more or less supplemented by new additional indexes, see items 2 and 3 of Thm. 2.4. This indicates some

degree of stability of this approach, but also shows the incompleteness of the sets of essential indexes if s is too small.

The right plot of Fig. 14 shows the positions of these essential data points with respect to the x-y image representation.

See also [18] for a comparison of the present results with the approach based on the vertices of inner polyhedron and

with εC = εS = 0, which means working with the hard constraints C, S ≥ 0.
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Figure 15: Spectroelectrochemical analysis of the anthraquinone system as introduced in Sec. 4.3. For the series of spectra (left) with a moderate

noise level the first 30 singular values are shown in the centered plot. The forward EFA plot is shown right. The singular values do not clearly

indicate the number of absorbing species.

4.3. Spectroelectrochemical (SEC) data for a system with three chemical species

Next, we compare the two approaches to detect essential data points for UV-Vis-SEC data of some redox states of

anthraquinone (AQ) [2, 26]. The measurement was carried out in a thin layer cell under argon atmosphere using a

solution of 0.1 M tetrabutylammonium tetrafluoroborate in dry acetonitrile as the electrolyte. A gold mesh served

as the working electrode, a platinum wire as the counter electrode, and a Ag/0.01M AgNO3 electrode was used as a

reference. Under these conditions, single electron reduction of AQ at E0 = −1.23V leads to radical anion AQ−, which

can be further reduced to the dianion (AQ2−) at E0 = −1.95V (the equilibrium potentials E0 have been determined

in separate cyclic voltammetry experiments). During the SEC measurement, the potential was cycled once between

-0.7 V and -2.7 V (sweep rate: 50mV s−1). The wavelength of the absorbance peaks of all compounds are known and

are used as a reference to verify our results. The signal-to-noise ratio for these UV/Vis measurements has a medium

level and no matrix entry of the spectral data matrix D is close to zero. The data set consists of k = 1000 spectra with

n = 1397 wavenumbers.

Fig. 15 shows the data set, the associated curve of singular values and the forward evolving factor analysis plot

(EFA plot). The distribution of the largest singular values does not clearly indicate the number of chemical species.

However, the knowledge of the underlying chemistry justifies to assume at least s = 3 species, even though the EFA

plot shows more curves. We assume a moderate noise level and select εC = εS = 0.01 for the detection of the

essential spectral information by active constraints. Fig. 16 presents the data points in the U- and V-space. We mark

the data points corresponding to active constraints as determined from the dual outer polygons by red stars. Green

stars indicate the vertices of the inner polygons. Additionally, the essential spectra/wavelengths corresponding to the

marked data points in the mixed spectra are highlighted. We conclude that the two approaches show very similar

results.

This data set indicates that although the signal-to-noise ratio is not small, a stable detection of the essential spectral
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Figure 16: Spectroelectrochemical analysis of the anthraquinone system as introduced in Sec. 4.3. Left and center: All data representing points in

the U- and the V-space are marked by gray circles. If such a point via duality underlies an active constraints of the outer polygons, then a red star is

plotted. The convex hull of all these points forms the respective inner polygon. The vertices of the inner polygons are marked by green stars. Right:

In the series of measured spectra (black) the essential wavenumbers (in general frequency channels) are marked by red vertical lines if determined

by the duality-based active constraints approach and by green broken lines if they are determined by the vertices of the inner polygon. The results

are comparable and indicate that both methods work well.

dimension reduction NMF comp. time [s]

s k∗ n∗ k∗n∗/(kn) for D for D̃

3 18 6 3.6 · 10−4 0.93 1.00 · 10−3

4 39 18 1.7 · 10−3 1.54 1.20 · 10−3

5 74 20 6.0 · 10−3 1.15 1.40 · 10−3

6 120 43 1.6 · 10−2 0.82 3.00 · 10−3

Table 1: The table lists the numbers of essential spectra k∗, essential frequency channels n∗ for s = 3, 4, 5, 6 and the ratios of the essential data

dimensions related to the full data set dimensions. The two right columns contain the computation times for the routine nnmf in MatLab applied to

the original data D ∈ Rk×n and the reduced data D̃ ∈ Rk∗×n∗ for the Raman hyperspectral image data introduced in Sec. 4.2.

information is possible if all signals are significantly different from zero. Both approaches (by vertices of the inner

polyhedron and by active constraints of the outer polyhedron) are suitable for this data. This finding is especially

important for data with a relatively large number of chemical species, for example with s ≥ 6, since then the computa-

tional costs to detect the active constraints strongly increases. The only significant difference can be found in the left

lower corner of the V-space plot around (x1, x2) ≈ (−0.31,−0.11), namely for the spectra with indexes 845–870. This

data set is also used in the final outlook section for computing a pure component decomposition based on the reduced

data including only its essential parts. This reduced-data-based factorization is then used to generate a factorization

of the full, original data set.

4.4. Outlook to a dimension reduction

Next we demonstrate the essential spectral information reduction for the spectroelectrochemical data set as introduced

in Sec. 4.3; we also refer to the idea in [6]. Therefore, we define the submatrix D̃ = D(essC,3, essS ,3) of D which

extracts from D the rows according to the lists of essential spectra indexes essC,3 and the list of essential wavenumbers

essS ,3. The numbers of indexes (or active constraints) are k∗ = 66 spectra and n∗ = 25. Related to the original

dimensions k = 1000 and n = 1397 the information is reduced by the factor kn/(k∗n∗) ≈ 846. Then the pure

component factors underlying D̃ are determined. The results are shown in Fig. 17 as broken curves with respect to

index subsets. The decomposition of the reduced data can be extended (SVD-based prolongated) to the complete data.

A comparison with the results of a pure component decomposition for the original data shows minor deviations for

the anthraquinone radical anion species.

The resulting dimension reduction has a direct impact on the computational costs for determining pure component

factorizations for this data. For the spectroelectrochemical data set, see Sec. 4.3, the computation time to run the

routine nnmf in MatLab is 7.28 · 10−1 s for the original data D̃ ∈ R
1000×1397 and 1.80 · 10−3 s for the reduced data

set D̃ ∈ R
66×25. The same number s = 3 of species is used in these two cases. For the Raman hyperspectral image

data introduced in Sec. 4.2 we observe similar results. Table 1 lists the reduced dimensions, the dimension reduction

ratios together with the computation times needed for a nonnegative matrix factorization (NMF). All these numbers

are given under the assumption of s ∈ {3, . . . , 6} species. The computations were done on a single core of a standard

PC with a 3.4 GHz Intel processor and 16GB RAM. The computation times are averaged over a number of 50 runs

under MatLab R2018a.
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5. Conclusion

A general challenge of data sciences in today’s digitized world is to filter out the important parts from high-dimensional

data for a subsequent dimension reduction. Transferred to MCR analyses, one is often faced with high-dimensional

measured data for which the computation of a pure component decomposition is the last step of an information filter-

ing. For this purpose, it appears advantageous to reduce the measurement data to its essential parts before applying an

MCR analysis. A reliable identification of essential parts of the given data matrix appears to be necessary for a stable

reduction of the data to their essential parts.

Regardless of the methodological approach, it remains to be stated that the extraction of essential or relevant spec-

tral information from spectral mixture data is closely related to the underlying geometry of the nonnegative matrix

factorization problem. The vertices of the inner polyhedron or equivalently the facets of the dual outer polyhedron

are the decisive quantities which determine the feasible pure component factorizations. These fundamental relations

also apply in a weakened form to noisy, experimentally gained spectral data. Then the duality-based active constraint

approach appears to be a reasonable alternative to the inner-polyhedron approach. The essential information com-

prises only a small part (as demonstrated up to the per thousand range) of the original data dimensions. However,

ignoring all the redundant, non-structure determining parts of the spectral data may not always be recommended. It

is expected that redundancy can stabilize MCR factorizations, especially for a non-negligible noise level. Then a

medium-sized spectral data matrix comprising the essential spectral information plus some redundant parts appears to

be most reliable for MCR analyses of spectroscopic mixture data.

6. Acknowledgement

CR acknowledges funding from the project ANR-21-CE29-0007, Agence Nationale de la Recherche.

References

[1] J. J. Andrew, M. A. Browne, I. E. Clark, T. M. Hancewicz, and A. J. Millichope. Raman Imaging of Emulsion Systems. Appl. Spectrosc.,

52(6):790–796, 1998.

[2] A. Babaei, P.A. Connor, A. J. McQuillan, and S. Umapathy. Uv-visible spectrooelectrochemistry of the reduction products of anthraquinone

in dimethylformamide solutions: an advanced undergraduate experiment. J Chem. Educ., 74(10):1200, 1997.

[3] O.S. Borgen and B.R. Kowalski. An extension of the multivariate component-resolution method to three components. Anal. Chim. Acta,

174:1–26, 1985.

[4] P.J. Gemperline. Computation of the range of feasible solutions in self-modeling curve resolution algorithms. Anal. Chem., 71(23):5398–

5404, 1999.

[5] M. Ghaffari, N. Omidikia, and C. Ruckebusch. Essential spectral pixels for multivariate curve resolution of chemical images. Anal. Chem.,

91(17):10943–10948, 2019.

[6] M. Ghaffari, N. Omidikia, and C. Ruckebusch. Joint selection of essential pixels and essential variables across hyperspectral images. Anal.

Chim. Acta, 1141:36–46, 2021.

[7] A. Golshan, H. Abdollahi, S. Beyramysoltan, M. Maeder, K. Neymeyr, R. Rajkó, M. Sawall, and R. Tauler. A review of recent methods for
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Figure 17: Reduction of the anthraquinone (AQ) spectroelectrochemical data, see Sec. 4.3, to its essential parts. First row: Low-dimensional data

representing vectors in the U- and V-space for the reduced data set D̃ ∈ R66×25. Second row: The associated concentration and absorption values

with respect to the grids of essential indexes. Third row: The discrete profiles (colored stars) from above are underlaid with the concentration

profiles and pure component spectra (colored lines) as computed for the complete data. The results of a direct factorization of the complete data D

are represented by black dotted lines and the values from the 2nd row are marked by black pluses (the results based on D̃.
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