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Abstract

The computation of lower and upper band boundaries for the feasible solutions of multivariate curve resolution prob-

lems is an important and well-understood methodology. These techniques assume rank-regular spectral data matrices,

namely the rank of the matrices equals the number of chemical species involved. For rank-deficient problems, which

include linear dependencies within the pure component factors, band boundary calculations are much more complex.

This paper deals with rank-deficient problems for which the rank-deficient factor is known and describes how to

calculate band boundaries for the dual factor. The key tools for these band boundary computations are polytope con-

structions and linear programming problems to be solved for each spectral channel. Numerical studies are presented

for a model problem and for two experimental data sets.
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1. Introduction

Multivariate curve resolution (MCR) methods aim at extracting pure component information from mixed spectro-

scopic data. For time series of spectra exhibiting the Lambert-Beer bilinearity, MCR tries to recover the number

of chemical species and their pure component spectra as well as the associated concentration profiles [20, 19]. The

Lambert-Beer law in matrix form reads

D = CS T. (1)

The k × n matrix D contains the measured spectral data where k is the number of spectra and n the number of

spectral channels per spectrum. For a chemical s-component system, the k × s matrix C contains in its columns the

concentration profiles of the pure components and the n× s matrix holds column-wise the associated pure component

spectra. Noise, measurement errors or other perturbations can be collected in an additional k × n matrix E which is

added to the right hand side of (1). The sum of squares (ssq) of the matrix elements of E is assumed to be relatively

small compared to the ssq of D.

The ambiguity of the solution factors C and S is the key problem of MCR methods [19, 10, 30]. If potential solution

factors C and S have the full rank s, then any other solution can be represented as CT−1 and TS T where T is an s × s

regular matrix. Such transformation matrices T enable the systematic analysis of the factorization ambiguity. They

are also the basis for duality concepts in MCR which make it possible to transfer partial information from one factor

to the dual factor. However, in some cases the assumption of full-rank matrices C and S does not hold and the rank

of one of the two factors is smaller than the number of absorbing chemical species. Such situations are known under

the keyword of rank-deficiency and, for instance, can exist for time series of spectroscopic data [15, 28, 3]. In other

words certain column vectors of C or S are linearly dependent. For example, a linear dependence of the columns of

C is given if the concentration profiles fulfill two independent closure conditions.

Contrastingly, for rank-regular problems a given complete factor C or S uniquely determines the other, so-called dual

factor. The connecting elements are the matrix T and its inverse. Practically, for noisy experimental data the dual

factor can be computed by the solution of a least-squares problem. Equivalently, one can use the Moore-Penrose

pseudoinverse [12]. For rank-deficient problems the situation is more complicated: Only if the higher rank factor (we

call it the rank-regular factor) is given, then the rank-deficient factor can be computed by using the Moore-Penrose

pseudoinverse in the same way as for rank-regular problems. However, if the rank-deficient factor is given, then
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the dual factor is not uniquely determined. See Sec. 1.3 for more details on these different situations. The more

complicated case of a given rank-deficient factor is studied in this work.

Thus we are interested in determining the factor ambiguity in terms of band boundaries enclosing all feasible solu-

tions for the rank-regular factor if the rank-deficient factor is given. Our approach works with the low-dimensional

representation of profiles in terms of the so-called Area of Feasible Solutions (AFS, [26, 11, 9, 30, 37, 39]). AFS

techniques base on a singular value decomposition (SVD, [12]) of the matrix D. The SVD is an effective way for a

dimensionality reduction of the factorization problem since the factors can be represented with respect to the bases

of left- and right singular vectors of D. We introduce the geometric setup of the SVD-based solution representation

in the following sections. Its low-dimensional representation can be used to compute lower and upper limits for the

coefficients for each mixed spectrum/frequency and each chemical species. In contrast to the low-dimensional rep-

resentation for rank regular problems, the representatives of the mixed data are not longer convex combinations in

terms of the vertices of a simplex, but are convex combinations of the vertices of a polytope, which have more vertices

than a simplex. Detailed explanations are given below. Such convex combinations of the vertices within a polytope

are not uniquely determined in contrast to such convex combinations within a simplex. The feasible ranges for the

coefficients of such convex combinations in polytopes directly relate to the ranges for the profiles of the components

for the selected representative. The resulting ranges can be interpreted as band boundaries for the rank regular factor.

The AFS concept has recently been extended to rank-deficient problems in [38], where techniques are introduced for

the computation of the AFS for the rank-deficient factor. The underlying algorithm works with a basis of singular

vectors from a truncated SVD which does not allow a reconstruction of the rank-regular factor. This paper uses the

conceptual basis underlying [38], but focuses on the computation of band boundaries. Our purpose is not to tackle the

rank deficiency problem, but to make predictions from a given rank-deficient factor on the dual full-rank factor. The

suggested method produces bands of feasible profiles for the dual full-rank factor.

1.1. Overview

The paper is organized as follows. Sec. 2 explains the geometric setup of constructing feasible factorizations in

terms of simplices enclosing the inner polygon, whose vertices are the representing vectors of the measured spectral

data. Sec. 3 generalizes this approach to rank-deficient problems and shows that polytopes with an additional vertex

compared to the simplex construction are useful. The vertices of the feasible polytopes are shown to be determined by

the solution of certain linear programming problems. Numerical results are presented in terms of band boundaries for

three rank-deficient problems in Sec. 4. We consider two four-component systems which all have a rank-deficiency of

the degree one. The first system is a model problem and the second system is an experimental data set for consecutive

reactions. The third system includes six chemical species, multiple equilibria and has a rank-deficiency of the degree

two.

1.2. An accompanying model problem

The following rank-deficient Michaelis-Menten model problem is used for introducing the theoretical concepts.

Example 1.1. For the Michaelis-Menten kinetic model

S +K
κ1
−−⇀↽−−
κ−1

[S−K]
κ2
−→ P +K

we consider the concentration profiles of the four species for the kinetic constants (κ1, κ−1, κ2) = (20, 0.1, 3). The

initial concentrations are cS(0) = 1, cK(0) = 0.1 and c[S−K](0) = cP(0) = 0. The initial value problem is solved on the

time interval [0, 7.5] with a number of k = 201 equidistant nodes. The pure component spectra are assumed to be the

shifted Gaussians

â1(ν) = 2.5 exp

(
−

(ν − 20)2

200

)
+ 0.075, â2(ν) = 12.5 exp

(
−

(ν − 40)2

200

)
+ 0.075,

â3(ν) = 10 exp

(
−

(ν − 60)2

200

)
+ 0.065, â4(ν) = exp

(
−

(ν − 80)2

100

)
+ 0.065.

(2)

The indices relate to the four chemical species as (1, 2, 3, 4) = (S,K, [S−K],P). Discrete spectra vectors are formed

for ν ∈ [1, 100] with n = 100 equidistant nodes in the frequency interval. Thus we get C ∈ R
201×4, S ∈ R

100×4 and

the product matrix D = CS T ∈ R201×100. This model problem has a rank-deficiency in the concentration factor since

s = rank(D) = rank(C) = 3, but m = rank(S ) = rank+(D) = 4. Therein, the operator rank+ denotes the so-called
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nonnegative rank, namely the smallest number m so that D has a nonnegative matrix factorization with m = rank(S );

see [2, 7, 38]. It is worth noting that for s ≥ 4 the nonnegative rank of a nonnegative matrix is not easily accessible

and that its computation is an NP-hard problem [8, 40].

1.3. Two cases of a known factor of a rank-deficient problem

For a rank-deficient matrix D = CS T the factor C or the factor S can cause the rank-deficiency. Next we illustrate the

two possible cases by means of a simple model problem and explain the very different problem depth of the related

MCR problems. We consider the kinetic reaction model X + Y → Z, which determines the concentration profiles,

together with the spectral profiles â1, â2 and â3 as given in Eq. (2). Then the factor C has only the rank 2, S has the

rank 3 and consequently D = CS T suffers from a rank deficiency. The dimensions and ranks are

C ∈ R51×3, rank(C) = 2, S ∈ R100×3, rank(S ) = 3, D ∈ R51×100, rank(D) = 2.

Case I: If the full rank factor S and the product factor D are given, then the factor C is uniquely determined. The

matrix equation CS T = D consists of k = 51 linear systems of equations (row-wise). All these linear systems have

unique solutions under the given rank assumptions. All solution row vectors finally form the matrix factor C. A

simultaneous solution of all linear systems is possible by the MatLab-command C=(S\D')' which returns C. This is

the trivial case.

Case II: If the two rank-2 matrices C and D are given, namely the non-full-rank factor and the product matrix, then

the factor S with the rank 3 is not uniquely determined. Since C does not have the maximal rank 3, the n = 100

(column-wise) linear systems of equations CS T = D are all underdetermined. Each solution consists of a special

solution of the inhomogeneous system plus a one-dimensional null space. Hence the solution of the matrix equation

suffers from a non-trivial ambiguity. The nonnegativity constraints for S can reduce the factor ambiguity. One can also

try to compute C\D in MatLab for the given example. However, the result is a special solution with many negative

entries. The resulting factor consists of norm-minimizing solutions in the affine solution spaces. A chemical meaning

cannot be stated.

In this work we present an approach to compute the feasible bands of profiles for the non-trivial case 2. Figure 1

illustrates for the given problem the two cases with a unique solution in case 1 and broad bands of feasible nonnegative

solutions in case 2.

Furthermore, duality arguments [14, 25, 29, 31] do not help to resolve the factor ambiguity in the non-trivial case 2.

For instance, for a rank-regular (not rank-deficient) three-component problem, the knowledge of two concentration

profiles makes it possible to determine the remaining third spectral profile with duality arguments. This profile is

uniquely determined except for scaling. In proper situations the multiple application of such duality arguments can

even allow to determine the complete factor S . However, duality arguments are not applicable in the same way to

rank-deficient problems. The key problem is the incompleteness of the required bases of singular vectors. If D is a

rank-deficient matrix, then its singular value decomposition can only provide the singular vectors which are required

for the expansion of the lower rank factor. Here, we are interested in the reconstruction of the higher rank factor for

which one singular vector is missing. This work explains how to construct the possible range of profiles of the higher

rank factors from given D and the given lower rank factor. The nonnegativity constraint is decisive in these factor

ambiguity computations. The details of this factor reconstruction process are explained in Sec. 2.1, 2.2 and 3.1.

2. Geometric Factor construction for the rank-regular case

The principles of the geometric construction of the factors C and S have been introduced by Borgen and Kowalski [1]

for chemical systems with three chemical species. This construction works in a low-dimensional affine space whose

coordinates are coefficients of the left/right singular vectors of D. The geometric key objects are an inner polygon,

whose vertices represent the measured spectra, and an outer polygon representing the nonnegativity constraints. Be-

tween these two polygons further triangles are constructed which enclose the inner polygon and which are enclosed

in the outer polygon. If such a triangle exists, then its vertices determine a nonnegative matrix factorization D = CS T

and vice versa. The case of triangles applies to chemical three-component systems; for systems with more chemical

species higher-dimensional simplices are considered. In the following, we explain the mathematical details for the

factor S .
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Figure 1: Two cases of a known factor of a rank-deficient problem as introduced in Sec. 1.3. The factor C satisfies the kinetic model X + Y → Z

and suffers from rank-deficiency. The color code is X (blue), Y (red) and Z (yellow). Top: case I, the data matrix with a rank-deficiency and the

spectral factor with full rank are given. Then the concentration factor be uniquely computed, e. g., in MatLab by C=(S\D')'. Bottom: case II, the

data D and the rank-deficient concentration profile matrix are given (e. g., by hard modeling). Then the factor S is not uniquely determined. The

resulting feasible bands for the spectral profiles are plotted by colored bands. This work explains how to compute these bands.

2.1. Dimensionality reduction by the SVD

The SVD enables a low-dimensional representation of the factors C and S . To explain this, let UΣVT be a truncated

SVD of D. If D relates to a chemical s-component system, then only s singular values, namely the diagonal elements

of the diagonal matrix Σ, are nonzero. Here we ignore noise which leads to further singular values close to zero.

The s columns of U and V are the left and right singular vectors of D and provide the mathematical bases for the

construction of the factors C and S . For any factorization D = CS T an invertible matrix T ∈ Rs×s exists so that

C = UΣT−1, S T = TVT. (3)

Without loss of generality, the first column of T can be assumed to be equal to the all-ones vector since the first left

and right singular vectors can be assumed to be component-wise positive; see [33, 36] for details.

Next we can introduce the above mentioned polygons and refer to [1, 26, 31, 34, 39] for the mathematical background.

First the measured spectra, namely the rows of D, are represented within the V space by the (s−1)-dimensional column

vectors

ai =
(UΣ)T(2 : s, i)

(UΣ)T(1, i)
, i = 1, . . . , k. (4)

These ai are called the representatives of the mixed spectra, see [32, 5, 27, 6] for the representatives in terms of

relevant and essential information. The convex hull of the ai is the inner polygon

I = convhull({a1, . . . , ak})

in V-space. Additionally, we assume (s − 1)-dimensional column vectors x1, . . . , xs to be given which span a simplex

in the V-space which is assumed to include the inner polygon. These vectors are taken in transposed form to fill the

rows of T together with a leading 1 in each row. This reads

T (i, :) = (1, xT

i ), i = 1, . . . , s. (5)

Here the index i enumerates the vectors xi and does not refer to the ith vector component. If and only if additionally

all xi, i = 1, . . . , s, are contained in the outer polygon

F =
{
x ∈ Rs−1 : (1, xT)VT ≥ 0

}
,

then S T = TVT and C = UΣT−1 are nonnegative matrices. In other words, the geometric conditions stated above

guarantee the required nonnegativity of the factors C and S .
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2.2. A duality relation for the rank-regular case

For rank-regular problems a known factor C completely determines the dual factor S and vice versa. If, for instance,

S is given, then C = D(S T)+ with the pseudoinverse (S T)+. With respect to the SVD representation this reads

C = UΣT−1. These basic relations are applicable if a complete matrix factor is given. However, partial information

on one factor also imposes constraints on the dual factor [14, 25, 29, 31]. In this section we derive a specific duality

relation for the rank-regular case, which is used later in a generalized form for the rank-deficient problem.

Let D = CS T be a nonnegative matrix factorization with a k × s matrix C and an n × s matrix S . From S T = TVT and

(5) we get for the first column of T the all-ones vector

(S TV)(:, 1) = (1, . . . , 1)T ∈ Rs. (6)

If this scaling assumption for a certain S̃ is not fulfilled, then a column re-scaling by a right multiplication with a

diagonal matrix is possible

S = S̃ ·
(
diag(S̃ TV(:, 1))

)−1
.

Then the resulting S fulfills (6). The scaling used in (6) is a possible, but by no means alternativeless procedure

for representing the factor ambiguity of an MCR problem. The general background are Borgen norms. The specific

scaling (6) with the all-ones vector in the first column of T , which essentially says that any nonnegative profile has

always a non-vanishing contribution from the first singular vector is well justified by the Perron-Frobenius spectral

theory of nonnegative matrices, see [21, 36, 23]. In [16] this scaling is called the FSV-scaling (first singular vector)

and has been related to the Row-Sum-Scaling (RS) as introduced by Borgen and Kowalski [1, 26]. The work [16]

discusses these two scalings and shows how to switch between them.

Next, we focus on the factor S of such a nonnegative matrix factorization. The associated column vectors xℓ with

xT

ℓ = T (ℓ, 2 : s) for ℓ = 1, . . . , s (7)

span a simplex which is located in the V-space between the outer and the inner polygon [1, 26, 39]. These relations

also hold backwards, namely a simplex with the these properties via its vertices defines a matrix T from which by

(3) and (7) the associated factors C and S are determined. The next theorem presents a “local” duality relation which

expresses the ith row of C, i = 1, . . . , k, in terms of a convex combination of the vertices xℓ representing the measured

spectra ai according to (4). A similar relation is known from Lemma 2.2 of [16].

Theorem 2.1. Let D = CS T be a nonnegative factorization for a rank-regular problem with S fulfilling the scaling

assumption (6) and let T = S TV. The associated simplex with the vertices xℓ is assumed to enclose the measured

spectra representatives ai according to (4) so that for i = 1, . . . , k the following convex combinations hold

ai =

s∑

ℓ=1

α
(i)

ℓ
xℓ with 1 =

s∑

ℓ=1

α
(i)

ℓ
. (8)

Therein the nonnegative scalars α
(i)

ℓ
are the coefficients of the convex combinations representing ai. These coefficients

are unique as the xℓ span a simplex. We further define the row vector α(i) = (α
(i)

1
, . . . , α

(i)
s ).

Then the ith row of the matrix C has the form

C(i, :) = wiα
(i), i = 1, . . . , k, (9)

with the scalars wi = D(i, :)V(:, 1).

Proof. Direct calculation with UΣ = DV shows that the denominator of (4) equals wi since

(UΣ)T(1, i) = (VTDT)(1, i) = VT(1, :)DT(:, i) = (V(:, 1))T(D(i, :))T = D(i, :)V(:, 1) = wi.

Hence we can rewrite the ai by (4) as follows, where we use UΣ = DV = (CS T)V = C(TVT)V = CT in the second

equality

ai =
(UΣ)T(2 : s, i)

wi

=
(CT )T(2 : s, i)

wi

=
(CT (i, 2 : s))T

wi

=

(
C(i, :)

wi

T (:, 2 : s)

)T

=

s∑

ℓ=1

C(i, ℓ)

wi

xℓ.

The comparison of the latter sum with the first sum in (8) shows that C(i, ℓ)/wi = α
(i)

ℓ
for ℓ = 1, . . . , s since convex

combinations in a simplex are unique. Rewriting this in the form of a row vector identity results in (9).
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Figure 2: This plot illustrates Example 2.2. A feasible factor S is represented by the three colored stars being located within the respective subsets

of the AFS drawn in the same color. The stars span a triangle (black dotted lines) which encloses the inner polygon, namely the convex hull of the

gray circles. The circles mark the measured spectra representatives ai in the abstract plane. In Example 2.2 one of these circles is selected (drawn

in black) and the coefficients of the convex combination in terms of the vertices of the triangle are computed. This finally provides the information

of a row of the factor C.

The following numerical example illustrates how the ith row of the concentration matrix C is determined from the xℓ
and the ith measured spectrum represented by ai.

Example 2.2. We use the data set example2 of the FACPACK toolbox [35]. For this three-component rank-regular

model problem the simplex with the vertices

x1 =

(
−0.3670

−0.1534

)
, x2 =

(
1.3872

−0.7154

)
, x3 =

(
0.4378

0.6221

)

corresponds to a feasible factor S . Fig. 2 illustrates that the three vertices are located in the AFS so that the simplex

includes the inner polygon, whose vertices are marked by gray circles. For example, we select i = 3 and compute

the coefficients of the convex combination of the V-space representative a3 of the third measured spectrum. We get

a3 = (0.3899, 0.1812)T. The convex combination using the vertices x1, x2 and x3 of the triangle (simplex) reads

a3 = 0.2662x1 + 0.1752x2 + 0.5586x3.

Applying (9) from Thm. 2.1 with the scaling D(i, :)V(:, 1) = 5.5480 yields

C(3, :) = 5.5480 · (0.2662, 0.1752, 0.5586) = (1.4769, 0.9722, 3.0989).

3. Extension to rank-deficient problems

For the theoretical derivations in this section, we assume the rank deficiency in the second factor of the model D =

CS T, namely the factor S . We are aware and emphasize that the rank deficiency typically occurs in the concentration

factor C. What is the advantage of assuming the rank deficiency in the second factor? The point is that within the

AFS framework (as discussed in Section 2 and also in many publications on AFS analyses and techniques) the factor

S T = TVT is typically used to build the AFS in terms of the matrix elements of T . In order to show how a rank

deficiency affects the AFS construction (and doing this in a consistent mathematical notation), we prefer assuming the

rank-deficiency caused by S . (Later all concepts can be transferred from D = CS T to the dual factor by transposition

DT = S CT.)

The work [38] shows how to construct the sets of feasible solutions for the spectral factor in terms of a (truncated)

SVD. What has not been considered so far is the problem of how to determine band boundaries for the possible

solutions of the dual factor C if S causes the rank-deficiency. This problem is treated here. Next let s be the rank of D

and let m be the number of chemical species underlying the series of spectra forming the rows of D. Rank-deficiency

means that s < m. Since S causes the rank-deficiency, a proper T ∈ Rm×s of rank s yields S T = TVT. Within this setup

the matrix S has m linearly dependent columns in a way that its rank equals s. Without restriction of generality we

can assume S to fulfill a column scaling so that (S (:, ℓ))TV(:, 1) = 1 for ℓ = 1, . . . ,m. This is the usual column scaling

of rank-regular problems as considered above in (6).
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Next we focus on extracting information on the dual factor C within the given setup. Our aim is to generalize Theorem

2.1 for rank-deficient problems and to make predictions on the rows C(i, :) of C. It should be noted that these rows

are not the concentration profile of a chemical species; instead C(i, :) is the vector of the concentration values of

the m chemical species at the time which is associated with the index i. Making predictions on C(i, :) succeeds by

using certain polytopes and their vertices, whereas simplices are decisive for the rank-regular case. The important

difference is that the coefficients in convex combinations are uniquely determined, whereas convex combinations

within polytopes (having more vertices than simplices) do not lead to unique coefficients. A simple example in two

dimensions is a triangle (a simplex) and a rectangle (a polytope). A point within the triangle is uniquely determined in

terms of a convex combination of the three vertices of the triangle, but there are many ways to expand a point within a

rectangle in terms of the four vertices of the rectangle. However, proper linear programming problems can be solved

in order to determine feasible ranges for the coefficients of convex combinations in polytopes. This is the idea of the

following analysis.

3.1. Convex combinations in polytopes for rank-deficient problems

Again, the starting point is a rank-deficient problem for which a truncated SVD makes it possible to determine the

feasible solutions for the factor that causes the rank deficiency. As shown in [38] such feasible solutions are completely

determined by the m vertices of a certain polytope in the s− 1 dimensional space, where the chemical reaction system

includes m chemical species and the rank of the spectral data matrix is s. Further, we assume that m equals the

nonnegative rank of D, namely that a nonnegative matrix factorization of D requires that one factor has at least the

rank m. Geometrically, this means that for this factor the polytope is not degenerated; hence each representative of

a profile in S is a vertex of the polytope. In other words, m is the minimal number of vertices of a polytope which

is located between the outer (enclosing) polytope and which encloses the inner (spectral data representing) inner

polytope. By means of an m × s matrix T it holds that S T = TVT with

T =



1 x1,1 . . . x1,s−1

...
. . .

...

1 xm,1 . . . xm,s−1


∈ Rm×s (10)

and xi = (xi,1, . . . , xi,s−1)T. These xi are the vertices of the polytope P. Since P encloses all measured spectra

representatives ai, i = 1, . . . , k, it is possible to represent them as convex combinations of the vertices

ai =

m∑

ℓ=1

α
(i)

ℓ
xℓ

with α(i) ∈ Rm. In a similar way to rank regular problems, the factor C can be computed row-wise using α(1), . . . , α(k).

In contrast to rank-regular problems, the convex combinations in the polytope (which is not a simplex) are not uniquely

determined. Instead, for each entry of C a feasible interval exists. Linear programming makes it possible to compute

lower and upper bounds for these coefficients. The resulting ranges are lower and upper bounds for the possible

concentration values.

Theorem 3.1 (Linear programs on feasible intervals for C). For the m × s matrix T by (10) we consider the linear

programming problems (A) and (B)

(A)



T TαT =

(
1

ai

)
,

α ≥ 0,

Minimize αℓ

and (B)



T TαT =

(
1

ai

)
,

α ≥ 0,

Maximize αℓ

(11)

for a row vector α ∈ R
m and with two parameters ℓ ∈ {1, . . . ,m} and i ∈ {1, . . . , k}. Let b

(i)

ℓ
be the solution of the

minimization problem (A) and u
(i)

ℓ
the solution for the maximization (B).

Then C(i, ℓ) is in the feasible interval (variable b for bottom, variable u for upper)

C(i, ℓ) ∈ wi ·
[
b

(i)

ℓ
, u

(i)

ℓ

]
(12)

with wi = D(i, :)V(:, 1).
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Proof. We first state that Theorem 2.1 can be generalized to the rank-deficient case. This means that it also applies to

m vectors x1, . . . , xm instead of only x1, . . . , xs. Then the k + 1 scalar equations given in (8) can be rewritten as vector

equality

(
1 . . . 1

x1 . . . xm

)


α1

...

αm


=

(
1

ai

)
or equivalently T TαT =

(
1

ai

)
.

Together with the necessary nonnegativity condition α ≥ 0 we get the two linear programming problems (11). The

relation of these convex parameters α and concentration values is given by Equation (9) namely

C(i, ℓ) = wiαℓ for ℓ = 1, . . . ,m.

The two solutions of the linear programming problems (A) and (B) yield the feasible interval (12) for C(i, ℓ).

The simplex algorithm [24, 42] is a standard approach to solve the linear programming problems (11). According

to the two parameters ℓ ∈ {1, . . . ,m} and i ∈ {1, . . . , k} a total number of 2mk linear programming problems is to be

solved. Each linear programming problem involves m variables. We have not observed any convergence problems

for these low-dimensional linear programming problems. The sequential solution of such a large number of linear

programming problems is numerically too expensive. We finally remark that the application of linear programming

tools in solving factor ambiguity problems in MCR is not new; see for instance [13, 17] for an application in the

context of the AFS and the computation of the inner and the outer polygons.

3.2. Quick solution of the linear programming problems by using basis variables

A fundamental property of the linear programming problem is that solutions are attained in a vertex of the polyhedral

domain on which the problem is posed [24, 42]. The simplex method is based on this fact and moves along edges to

adjacent vertices and terminates in an optimum. In each step one so-called non-basis index changes with a basis index

unless no further improvement is possible.

Here it seems to be advantageous to fix the index i, namely to consider a fixed measured spectrum as represented by ai,

and to solve all optimization problems for ℓ ∈ {1, . . . ,m}. The key point is that this results in considering a fixed linear

system in (11), but to consider different objective functions (namely to minimize or maximize) αℓ. This approach

makes it possible to determine componentwise boundaries for the complete row vector C(i, :). The feasible areas are

the same for all linear programming problems, which are related to a fixed ai. Thus it is enough to compute all vertices

of the feasible area only one time. Then all cost functions are evaluated in these vertices. If the set of basis indexes

has s elements, then the maximal number of vertices of the feasible area equals binomial(m, s) = m!/((m− s)!s!). This

is the maximal number of systems of linear equations to be solved. However, some of the sets of basis indexes are

not possible. This is always the case if ai is not located in the simplex spanned by the according vertices. We explain

these relations in the following example.

Example 3.2. In this example, we apply linear programming for computing band boundaries for the model problem

Example 1.1. This problem includes a rank-deficiency for the concentration factor C and not in S as assumed in the

present section for the reason of a consistent mathematical representation. In order to stay in the given notation, we

apply the analysis to DT as the matrix transposition swaps the two factors C and S . Next we focus on the computation

of the band boundaries for the row C(30, :). Figure 3 shows the geometric setup and helps to understand the convex

combinations together with the geometric enclosure conditions. The four vertices xℓ, ℓ = 1, . . . , 4, define the polytope

P. The polytope is feasible since it includes all ai. Only s out of the m vertices (or in certain situations even less)

are sufficient to build a convex combination that equals ai. However not all subsets of 3 vertices of these 4 vertices

are possible. One can easily see in Fig. 3 that the two vertices x1 and x2 have to belong to each feasible subset of

vertices as otherwise the black circle (which represent a(30)) cannot be spanned by a convex combination of vertices.

In contrast to this, the vertices x3 and x4 are not simultaneously necessary; only one of these two vertices is sufficient.

Hence we get lower bounds for the associated convex combination coefficients, namely b
(30)

3
= b

(30)

4
= 0, and also

b
(30)

1
> 0 and b

(30)

2
> 0. The two remaining systems of linear equations are



1 1 1

x11 x21 x31

x12 x22 x32





α1

α2

α3

 =



a
(30)

1

a
(30)

2

a
(30)

3

 and



1 1 1

x11 x21 x41

x12 x22 x42





β1

β2

β4

 =



a
(30)

1

a
(30)

2

a
(30)

3

 .
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Figure 3: Low-dimensional representation and convex combination for rank-deficient problem in the V-space for Ex. 1.1. The vertices x1 , . . . , x4 of

the quadrangle (black dashed) represent a feasible factor S that encloses the inner polygon. The black circle is the representative a(30) of the 30th

spectrum D(30, :). The point a(30) has to be expanded in terms of a convex combination of x1 , . . . , x4 . The coefficients are not unique. Obviously a

combination without x3 or x4 is possible, so b
(30)

3
= b

(30)

4
= 0. Further a convex combination without x1 or x2 is not possible, so b

(30)

1
= b

(30)

2
> 0.

The solutions of these two linear systems of equations provide the nonzero convex combination coefficients of the

vertices that define the feasible area of the linear programming problems (11) for the fixed (measured spectra repre-

sentative) a(30). The lower and upper boundaries according to linear programming are
(
b

(30)

1
, u

(30)

1

)
= (min(α1, β1), max(α1, β1)) ,

(
b

(30)

2
, u

(30)

2

)
= (min(α2, β2), max(α2, β2)) ,

(
b

(30)

3
, u

(30)

3

)
= (0, α3) ,

(
b

(30)

4
, u

(30)

4

)
= (0, β4) .

In Example 3.2 with s = 3, m = 4 and for each i = 1, . . . , k it is only necessary to solve two systems of linear

equations in R
3 to compute the band boundaries for C. In general the computation of the lower and upper boundaries

for an m-component system requires the solution of a number of binomial(m, s) systems of linear equations. Only

those index combinations resulting in nonnegative solutions are feasible. The minima and maxima in each component

finally define the boundaries. With a set of basis indexes {i1, i2, . . . , is} ⊂ {1, . . . ,m} the system of linear equations

reads



1 · · · 1

xi11 · · · xis1

...
. . .

...

xi1,s−1 · · · xis,s−1


α =



1

a(i, 1)
...

a(i, s − 1)


.

3.3. Degenerated polytopes

The linear programming strategy as introduced in Sec. 3.2 can only be applied if the polytope P is not degenerated.

This means that each T (i, 2 : m) is a true vertex. Otherwise, the simplification as introduced in Section 3.2 is not

applicable and the large number of linear programming problems according to Thm. 3.1 must be solved. Often the

non-degeneracy condition is satisfied, but, e. g., the experimental data set studied in Sec. 4.2 violates the condition.

Therein a subset of three species fulfills a closure constraint, but a fourth species acts as an inert interference.

3.4. Weakening of the geometric enclosure constraints for noisy data

The principles of the geometric construction of nonnegative factorizations D = CS T include various constraints as

discussed above. One decisive constraint is that feasible polytopes P have to include all the vectors ai, i = 1, . . . , k.

However, this constraint may sometimes be violated for noisy data. A consequence of such a violation is that the linear

programming problems by Thm. 3.1 are not always solvable. There are two possibilities to ensure that the approach

continues to work: One way is to move the vertices of the polytope P slightly outwards so that P encloses the inner

polytope but without intersecting the outer polygon. Then the vertices of the polygon represent only approximations

of the true profiles. The second possibility is to move the points ai that are outside of P slightly to its interior. Then

the shifted ai slightly distort the mixed spectra (rows of D). In Sec. 4.3 we choose the first option and move one vertex

of P outwards.
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Figure 4: Results for the Michaelis-Menten model problem, see Sec. 4.1. Left: the true concentration profiles of the four species (top) and their

low-dimensional representation in the U-space (bottom). The vertices of the polytope P bear the color of the associated concentration profiles. The

representatives ai of the mixed data are the gray circles. The boundaries of the outer polygon (broken line) and the inner polygon (dash-dotted line)

are drawn black. Center and right: the band boundaries for the four pure component spectra. The band boundaries enclose colored areas expressing

the factor ambiguity in which the true profiles are drawn by color-saturated lines.

A third possibility to deal with noise is to solve the systems of linear equations for all combinations of basis indexes.

Then one has to decide whether a negative entry arises from noise or due to the fact that the selected index set is

not feasible since the vector is truly outside the polygon. Such a decision is difficult and we do not recommend this

approach.

4. Numerical results

This section studies three rank-deficient problems. In all problems, the factor C suffers from rank-deficiency. Hard

modeling allows us to compute the true concentration profiles, and this knowledge enables the calculation of the band

boundaries for the pure component spectra. The first problem is the model problem from Example 1.1, the second one

is a kinetic study with an inert interference, and the third data set is a system with six absorbing components, multiple

equilibria and a rank-deficiency of two.

4.1. Analysis of a Michaelis-Menten model problem

The model problem with an underlying Michaelis-Menten kinetic is introduced in Example 1.1. We assume to know

the rank-deficient factor C and the matrix D of spectroscopic data. The goal is to compute spectral band boundaries

for all pure components. Fig. 4 shows the four (linearly dependent) concentration profiles of the pure components,

their associated low-dimensional representation by a quadrangle with respect to the basis of singular vectors, the inner

and the outer polygon, the data representing vectors ai, i = 1, . . . , 201, and finally the band boundaries of the pure

component spectra.

The width of the bands of feasible spectral profiles (and thus the ambiguity underlying the spectral factor) depends on

the position of the vertices of the quadrangle in relation to the data representatives ai, i = 1, . . . , n. Since the vertices

are close to the inner polygon, the ambiguity of the convex combination coefficients is relatively small.

4.2. Kinetic study of an alkaline hydrolysis with an inert interference

This experimental data set is described in detail in [22], see data set 2 in Sec. 4.2.2. The system is an alkaline

hydrolysis process of dimethyl phthalate in the presence of vanillin. Vanillin acts as an inert interference. Four ab-

sorbing species co-exist in the hydrolysis process, namely dimethyl phthalate underlying the hydrolysis, monomethyl

phthalate, phthalic acid and finally vanillin as a constant component.
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Figure 5: Alkaline hydrolysis process of dimethyl phthalate in the presence of vanillin as described in Sec. 4.2. Left: the mixed profiles (only

every 4th spectrum is plotted). Four components contribute to the absorption. The concentration factor suffers from a rank-deficiency due to

closure constraints within the three reacting components and the fourth inert species vanillin acting as an interferent. Center: the true concentration

profiles. The colored lines are the concentration profiles by hard modeling. These profiles are very close to the black dashed lines which are the

best approximations of the colored curves in terms of the first s = 3 singular vectors. Right: the low-dimensional representations ai of the rows of

D are plotted as gray circles in the U-space. The given concentration profiles of the four species are marked by colored stars. The inner polygon

is drawn as dashed black line and the outer polygon by solid black line. In this special situation one of the profile representing vectors does not

belong to the vertices of a feasible triangle.
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Figure 6: Spectral band boundaries for the alkaline hydrolysis process of dimethyl phthalate in the presence of vanillin as described in Sec. 4.2.

The spectral bands relate to the concentration profiles as shown in Fig. 5. The peak shapes of the bounding profiles match the typical profiles of the

given UV/Vis spectral data; the band widths are relatively large.

The kinetic model is that of a first order consecutive reaction X → Y → Z. Kinetic hard modeling yields ap-

proximations of the true concentration profiles. The kinetic parameters are approximately κ1 = 0.7186min−1 and

κ2 = 0.021min−1. The initial concentration values are (7.6 · 10−4, 0, 0, 10−4)mol/L. The time grid is not equidistant;

the first 10 spectra were taken every 10 seconds and the following 70 spectra were taken every 100 seconds. The

concentration factor suffers from a rank-deficiency since three reacting chemical species fulfill closure constraints and

the fourth species represents the inert interference of vanillin. Fig. 5 shows plots of the spectra series, the true con-

centration profiles and the low-dimensional factor construction between the inner and the outer polygon in U-space.

Here the special situation appears that the low-dimensional representation of one species (vanillin) does not represent

a vertex, see Sec. 3.3. Fig. 6 shows the feasible bands for the four pure component spectra. The spectral band for

vanillin is very wide since the representing vector of its concentration profile does not form a vertex of the polygon

in the low-dimensional U-space. The lower band boundary for vanillin is a constant zero function. This means that

for each wavelength the reconstruction also works without this representative. The right plot in Fig. 5 illustrates this

geometrically.

4.3. A multiple equilibria titration of monoprotic dyes

The UV/Vis spectra are taken from an acid-base titration of a mixture of three monoprotic dyes with NaOH. For the

titration a total volume of 50.0 mL is prepared containing a mixture of three indicators, namely 3 · 10−5 M Phenol

red, 3 · 10−5 M Methyl orange and 2 · 10−5 M Bromocresol green. The solution is acidified with 0.001 M HCl in

order to ensure a nearly complete protonation. All chemicals were purchased from Merck. The titration is carried

out with 0 : 11 mL of 0.005 mM NaOH. At each titration step 2.5 ml of the mixture solution are filled into the

cuvette and its absorption spectrum is measured in the wavelength range of ν ∈ [365, 700] nm at n = 336 wavelength

values. The titrations are performed at T = 298(±0.1)K. A total number of k = 60 spectra is taken while adding up

to 11 mL NaOH. Due to titration dilution the closures are not constant, but decreasing straight lines in Fig. 7. The

spectrophotometer is a Pharmacia Ultraspec 4000. The added volumes of NaOH vary during the titration and are
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given by

VNaOH =
(

0 : 0.6 : 9︸     ︷︷     ︸
16

, 9.05 : 0.05 : 9.7︸              ︷︷              ︸
14

, 9.725 : 0.025 : 9.9︸                 ︷︷                 ︸
8

, 9.95 : 0.05 : 11︸             ︷︷             ︸
22

)
mL .

Therein a triple a : b : c indicates the initial added volume a, the increment b and the final added volume c. The

underbracing is used to specify the number of measured spectra. See [18] for more details on the experimental data

and spectral measurements. We assume the equilibrium model

Pred(H+)
k1

−−⇀↽−−
k−1

H+ + Pred

Morange(H+)
k2

−−⇀↽−−
k−2

H+ +Morange

Bgreen(H+)
k3

−−⇀↽−−
k−3

H+ + Bgreen

in order to fit the equilibrium constants to the observed data. The spectra are taken for three different pKa values in

order to resolve the deprotonation equilibria. The fitted parameters and errors are

pKAPred(H+) = 7.66 ± 4.8 · 10−4,

pKAMorange(H+) = 3.43 ± 1.3 · 10−4,

pKABgreen(H+) = 4.62 ± 2.5 · 10−4.

The concentration profiles for Pred(H+), Morange(H+) and Bgreen(H+) are monotone decreasing and those of Pred,

Morange and Bgreen are monotone increasing. The data suffers from a twofold rank-deficiency due to the three closure

constraints

cPred(H+) + cPred
= const1, cMorange(H+) + cMorange

= const2, cBgreen(H+) + cBgreen
= const3

with three constants const1 to const3 whose individual values are given above. The reaction system contains m = 6

absorbing chemical species. Due to the closure constraints this is not reflected by the same number of nonzero singular

values. The spectral data matrix has only the ε-rank s = 4. The ε-rank describes the number of singular values which

are larger than a threshold ε > 0. All other positive singular values smaller than ε are attributed to noise.

The concentration profiles of the six species are computed by hard modeling. For this spectral data matrix with the

rank 4 the low-dimensional U- and V-space representations work in the three-dimensional space. With m = 6 chemical

species MCR-solutions are represented by polytopes P with 6 vertices. For the hard-modeled concentration profiles

the polytope P is enclosed by the outer polygon, but due to noise it does not exactly enclose the inner polygon.

This means that some of the measured spectra representatives ai are located slightly outside the polytope P. The

vertices of P are least-squares fits within the space of four left singular values to the modeled concentration profiles.

Due to noise the reconstructed profiles do not perfectly fit the profiles by modeling. In order to enforce that the

inner polytope is enclosed by P, the vertex associated with the concentration profile of the dye component Morange

is slightly modified. This is done in a way that the modified vertex is still contained in the outer polytope and that

the modified polytope P encloses the inner polytope. Sec. 3.4 explains that these modifications are necessary for the

linear programming approach to work. The other five vertices remain unchanged. Therefore, the low-dimensional

representation of the concentration of component Morange is not a least-squares fit (from the basis of left singular

vectors to the hard-modeled profile) but only an approximation. See Fig. 7 for the series of measured spectra, the

hard-modeled concentration profiles and their representations by the first s = 4 left singular vectors.

Fig. 8 shows the band boundaries for the six pure component spectra. Since the data set suffers from a twofold rank-

deficiency and all measurements show broad peaks around 450 nm, the feasible bands are not narrow in the given

spectral range. The true profiles (taken from separate measurements) allow an evaluation of the results. Except for

a few slight deviations, the results are within the calculated band boundaries. Almost all complete profiles (color

saturated lines) are located between the band boundaries, namely in the colored areas.

5. Summary

Computing band boundaries in MCR problems is an important and successful approach in order to estimate the

intrinsic factor ambiguity of a spectral data set [4, 41]. This work extends the concept of estimating factor ambiguities
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Figure 7: The series of measured spectra (left) as well as the true concentration profiles (right) for a titration of a mixture for three monoprotic dyes

with NaOH, see Sec. 4.3. Six chemical components show an absorption within the UV/Vis frequency range. The concentration factor suffers from

a twofold rank-deficiency so that the rank of the spectral data matrix equals s = 4. The colored lines (right) are the measured concentration profiles

and the black dashed lines are their least-squares approximations with respect to the space of the first s = 4 singular vectors except for the profile

for dye component Morange for which an additional correction step is applied, see Sec. 4.3.

by band boundaries to the more difficult rank-deficient problems. The key ingredient for making such an ambiguity

estimation possible is the geometric approach of representing feasible factors in the abstract U- and V-spaces in terms

of feasible polytopes which are located between the inner polygon of data representing vectors and the outer polygon

being related to the factor nonnegativity. While for the rank-regular case these polytopes are simplices (triangles in

2D, tetrahedra in 3D and so on), in the case of rank-deficient factors polytopes with a number of vertices that equals

the number of chemical species are decisive. The possible geometric locations of their vertices can be determined

by solving linear programming problems. Their solutions determine the sought band boundaries. Summarizing, the

prominent linear programming tools from optimization have found a new field of application, namely factor ambiguity

estimation in chemometrics.

An interesting challenge for the future is to use the singular vectors associated with the rank-regular factor in order

to predict band boundaries. In rank-deficient problems some information is always lost due to the underlying linear

dependencies. However, some of the information seems to be reconstructable since the lost information (dimension

of the linear space that is missing) is limited. So many abstract profiles are not possible and can be ignored. Only

m − s base vectors are necessary to complete the basis for the rank-regular factor.
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[31] M. Sawall, A. Jürß, H. Schröder, and K. Neymeyr. Simultaneous construction of dual Borgen plots. I: The case of noise-free data. J. Chemom.,

31:e2954, 2017.
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