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Abstract

A multivariate curve resolution problem is said to suffer from a rank-deficiency if the rank of the spectral data matrix

is less than the number of the involved chemical species. A rank-deficiency is caused by linearly dependent (in the

sense of linear algebra) concentration profiles or spectra of the pure components. The rank-loss is propagated to the

spectral mixture data according to the bilinear Lambert-Beer superposition.

This work deals with factor ambiguities for rank-deficient problems and presents an approach for the geometric

construction of the area of feasible solutions (AFS). The focus is on the case that the rank-deficient matrix factor has

the rank three and the number of chemical species equals at least four. The AFS construction works with polygons

tightly enclosing the inner polygon, namely with quadrangles in the case of four chemical species, pentagons for five

species and so on.
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1. Introduction

If a (time) sequence of spectra taken from spectral measurements, e.g., by observation of a chemical reaction system,

is stored in a matrix, then the spectral recovery problem consists of the reconstruction of the pure component profiles.

For so-called rank-regular or full-rank problems the pure profiles are reconstructable by linear combinations of the row

vectors respectively column vectors of the spectral data matrix. For rank-deficient problems the rank of the spectral

data matrix is smaller than the number of chemical species and the spectral recovery problem is more difficult.

A fundamental problem of calculating the true pure component profiles is the lack of their uniqueness even if high-

dimensional spectral data is available for both rank-regular (full-rank) and rank-deficient problems. Three approaches

to ambiguity analyses are known for rank-regular problems. A first approach is the enclosure of the feasible bands

by band boundaries [27, 11]. A second approach is the systematic analysis of the factor ambiguity by means of the

area of feasible solutions (AFS, [3, 7, 26]). Third, a sensor-wise estimation can be used to determine the boundaries

of the feasible profiles [16]. The AFS is a low-dimensional representation of all feasible pure profiles in terms of the

expansion coefficients with respect to the bases of left and right singular vectors of the spectral data matrix. The AFS

supports a systematic analysis of the factor ambiguity. For rank-regular problems several methods are known for a

numerical computation of the AFS. On the one hand, these are geometric construction algorithms and on the other

hand, genuinely numerical approximation methods [26, 7]. The well-known geometric construction, which leads to

the so-called Borgen or Borgen-Rajko plots, is restricted to spectral data taken from chemical systems with only three

species. The construction works with tight triangles located between the boundary curves of the outer polygon and

the inner polygon in the U- and the V-space [3, 19, 12, 2].

The recent work [25] suggests a generalized AFS construction for rank-deficient problems in combination with a

numerical algorithm for practical AFS computations. The algorithm uses inflating polygons, similar to [24], but with

some modifications concerning the dual factor. Here, we introduce a geometric construction of the rank-deficient

AFS by extending the geometric construction as known from the rank-regular case. The extended method works for

spectral data matrices of the rank three, but the number of absorbing species equals four, five or is even larger. The

generalized method works with polygons instead of triangles. The vertices of these polygons represent the complete

factors in the U- respectively the V-space. For example, quadrangles are used for four-component systems, pentagons

serve to represent pure component factors for five-component systems and so on. These polygons enclose the inner

polygon. Tightly enclosing polygons serve to construct the so-called inner boundary curve of the AFS; see [2] for

the definition of the inner boundary curve and [3, 19] for the construction of this curve. Depending on the number
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of species either a tangent rotates around the inner polygon (odd number of components) or a vertex moves along the

boundary of the outer polygon to compute a discretization of the inner boundary curve of the AFS.

The presented theory of this paper applies to chemical systems with at least four chemical species. We discuss an

example problem with four species and with the rank 3. For mathematical reasons a system with only three chemical

species including a rank-deficiency so that the spectral data matrix has the rank 2 cannot be considered. The decisive

fact is that any nonnegative rank-2 matrix always has a non-negative factorization, see [28, 4]. Therefore, no rank-

deficiency in the sense of a missing nonnegative factorization with matrices of the same rank can be stated and no

generalized AFS can be defined and calculated. However, in such cases a “standard” AFS can be computed, but then

at least one of the true profiles is not represented by the AFS or, in other words, at least all feasible profiles of a certain

pure component would have no chemical meaning or interpretation.

1.1. Organization of the paper

Section 2 introduces the low-dimensional abstract space representation of the multivariate curve resolution (MCR)

problem for rank-deficient problems. The key ingredients are rotating polygons with a minimal number of vertices.

Some crucial concepts from [25] are rehashed and important variables are introduced. Then Sec. 3 presents the new

construction algorithms which are based on a point orbiting on the boundary of the outer polygon and using a tangent

rotating around the inner polygon. Sec. 4 demonstrates how to use the geometric construction for noisy data. Further,

we highlight differences to the numerical computation approach from [25].

2. Geometric AFS constructions for rank-deficient problems

This section introduces the new geometric construction of the generalized AFS for rank-deficient MCR problems.

See [3, 14, 19, 8, 12, 26] and others for more details on the general approach of reconstructing the pure component

profiles by using a truncated singular value decomposition (SVD). We assume in this and the next section that the

rank-deficiency is caused by the spectral factor for which we use the variable S , cf. [25]. This assumption does not

restrict the generality of the approach since a transposition of the spectral data matrix swaps the concentration factor

with the spectral factor. The assumption that the rank-deficiency of the spectral data matrix D is caused by the spectral

factor implies that each column of S , namely the pure component spectra, are representable with respect to the first

s = rank(D) right singular vectors of D.

2.1. Preliminary considerations and important variables

Let UΣVT be a truncated SVD of the given k-by-n spectral data matrix D. Then all components of the first left singular

vector U(:, 1) and the first right singular vector V(:, 1) have the same sign, namely they are either positive or negative.

This is guaranteed (under the weak assumption of the so-called irreducibility of D) by the Perron-Frobenius theorem.

See [22, 15] for the MCR-related background. Without loss of generality we can even assume a componentwise

positivity of U(:, 1) and V(:, 1); otherwise U and V are substituted by −U and −V which again form an SVD.

The decisive geometric objects for the AFS construction in the V-space, namely the space of spectral profiles, are the

outer polytope F and the inner polytope I

F =
{

x ∈ Rs−1 : (1, xT)VT ≥ 0
}

,

I = convhull({a1, . . . , ak})

with the data representing points ai ∈ R
s−1 being defined as

ai =
(UΣ)T(2 : s, i)

(UΣ)T(1, i)
, i = 1, . . . , k. (1)

Later, we restrict the analysis to s = 3. Then the polytopes for s − 1 = 2 dimensions are simply polygons.

The nonnegative rank is an important property of a matrix in a rank-deficient problem. The nonnegative rank m :=

rank+(D) of a nonnegative matrix D ∈ Rk×n is defined to be the smallest number m ∈ N so that nonnegative matrices

C ∈ R
k×m and S ∈ R

m×n exist which represent a nonnegative factorization D = CS T of the spectral data matrix, see

[9, 4, 6]. Let m = rank+(D) be the number of anticipated chemical components and let s = rank(D) be the rank of D.

Necessarily, it holds that s ≤ m. As mentioned above, we assume the factor S to carry the rank-deficiency. Therefore

S can be reconstructed columnwise in terms of linear expansions of the first s right singular vectors. Similarly to [25],
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Figure 1: This figure illustrates the construction of an inner boundary point of the AFS of a rank-deficient matrix with rank 3 and nonnegative rank

4. Hence quadrangles in F are to be constructed which enclose I. The boundary of the outer polygon is plotted as a black dashed line and the

boundary of the inner polygon is drawn by a black dash-dotted line. These two polygons are determined by the given model matrix. The starting

point for the construction of the quadrangle is a first vertex p0 on the boundary of the outer polygon (blue cross). Then the two tangents to the inner

polygon which also run through p0 are t1 and t2 (red lines). Their points of intersection with the outer polygon (aside from the given point p0) are

p1 and p2 (red circles). Starting from p1 and p2 the next two tangents to I are t3 and t4 (ochre). Their point of intersection p∗ is contained in F (if

this is not the case, then no feasible factorization is possible starting from p0) and is a point on the inner boundary curve of the AFS (purple star).

By repeating this construction with other initial points, we can construct the complete inner boundary curve of the AFS. The result is the black

dotted curve, where we have also plotted parts of the curve outside F . The generalized AFS are all regions in F that lie between the dotted curve

and the boundary curve of F . These regions are marked as gray areas. The model data matrix underlying this illustration is taken from Sec. 6 of

[25] and all steps apply to the factor C.

a transformation by T ∈ R
m×s serves to form the m pure component profiles in terms of the first s singular vectors

with

T =

(

1 x

1 W

)

(2)

where 1 = (1, . . . , 1)T ∈ Rm−1 as well as W ∈ R(m−1)×(s−1). Then the generalized AFS for rank-deficient data D reads

N =

{

x ∈ Rs−1 : exists C ∈ Rk×m
+

and T ∈ Rm×s

with T (1, :) = (1, xT), TVT ≥ 0

and D = CTVT

}

.

2.2. Low-dimensional representation for rank-deficient problems by polygons instead of simplices

For the rank-regular (full-rank) case the vertices of a simplex nested between the inner and the outer polytope represent

a complete nonnegative factorization of D. However, for a rank-deficient matrix under the given assumptions there

does not exist a simplex located in the outer polytope which encloses the inner polytope. The latter statement is

justified as follows. For a rank-deficient matrix it holds that s = rank(D) < rank+(D) = m, and the nonnegative rank m

is the minimal number so that a polytopeP in the (s− 1)-dimensional space with m vertices exists that is located in F

and includes I, see for instance [1, 29, 6]. This is the reason why a polytope with exactly m vertices is required. Then

the geometric enclosure relations are equivalent to the existence of a factorization of the spectral data matrix with

nonnegative matrix factors C and S T. In more detail the relations are as follows. The data points ai by (1) are convex

combinations of the vertices of the polytope P being located in F if and only if P encloses the inner polytope [20].

Hence the polytope P results in a factor S which can be extended by an associated factor C to one feasible MCR-

solution. In the remainder of this work we only consider the geometric construction for the case rank(D) = s = 3.

Therefore we consider only geometric constructions in the (s−1 = 2)-dimensional space. This means that we consider

enclosing quadrangles, pentagons or polygons with more vertices in the two-dimensional plane.
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3. The geometric AFS construction algorithm for the rank-deficient case

In analogy to the rank-regular (full-rank) case, the goal of the algorithm is to determine the inner boundary curve of

the AFS. The remaining part of the boundary of the AFS belongs to the boundary of the outer polygon and is easy to

determine by the nonnegativity constraints. In the following we introduce two variants of the construction algorithm.

In each case tight polygons are computed with all edges touching (but not intersecting) the inner polygon and with all

but one vertices being located on the boundary of the outer polygon. Depending on whether m = rank+(D) is even

or not, a point on the outer polygon (for simplicity, we refer to a 2D polygon by its boundary curve) or a tangent to

the inner polygon is the starting point for the construction. The remaining vertex is on the inner boundary curve. The

point orbits on the boundary of the outer polygon for even m, respectively the tangent rotates around the inner polygon

for odd m. In both cases a smallest possible polygon is searched for which includes the given vertex or (part of the)

tangent and encloses the inner polygon. Next we explain the case m = 4 in detail and then give some remarks on more

general cases.

3.1. Geometric AFS constructions by quadrangles

This section introduces the geometric construction for the case rank+(D) = 4. The goal is to construct quadrangles

with three vertices on the boundary of the outer polygon and with all four edges being tangents of the inner polygon.

By definition a tangent of a polygon is a line touching the polygon in a way that the entire polygon lies on one side of

the line. This definition includes that the tangent is uniquely determined on all boundary points that are not vertices

and that there is a range of possible tangents in any vertex of the polygon. By studying the geometric relations of such

constrained tight polygon enclosures one is led to the following statements. In order to have analogous point-tangent

constructions and an equal number of tangents on both sides of the inner polygon, the construction of a quadrangle

starts with a vertex on the edge of the outer polygon. In order to compute the complete inner boundary curve many

quadrangles are to be constructed and one point of intersection of the initial tangent rotates around the boundary of

the outer polygon.

Let p0 ∈ R
2 be a certain point being located on the numerical representation, or discretization, of the boundary of F .

The construction of a quadrangle is as follows:

1. Construct two non-identical tangents t1 and t2 to the inner polygon which both run through p0.

2. Compute the two additional points of intersection p1 and p2 of t1 and t2 with the boundary of the outer polygon.

3. Compute for p1 and p2 the two additional tangents t3 and t4 to the inner polygon being different to t1 and t2 so

that t3 runs through p1, namely p1 ∈ t3, as well as that t4 runs through p2, that is p2 ∈ t4.

4. Compute the point of intersection p∗ of t3 and t4. Then p∗ is a point on the inner boundary curve of the generalized

AFS and is of interest for the AFS construction if it is contained in the outer polygon.

Fig. 1 illustrates the construction for one quadrangle in application to model data as introduced in Sec. 6 of [25]. It

is worth noting that the construction applies to the factor C carrying the rank-deficiency for this model problem. The

next theorem provides a geometric argumentation that the constructed point p∗ lies on the inner boundary curve of the

generalized AFS if p∗ ∈ F .

Theorem 3.1. For s = 3 and m = 4 it is not possible to move the constructed point p∗ in the direction of the origin,

namely the point (0, 0), without violating at least one condition associated with the non-negativity constraints of all

remaining profiles.

Hence, p∗ is a point on the inner boundary curve of the AFS. Further, p∗ is a feasible point if and only if p∗ ∈ F .

Proof. Due to the construction all tangents touch the inner polygon and at least all but one vertices of the quadrangle

are on the boundary of the outer polygon. Moving p∗ on a straight line towards the origin would open the cone

between these two tangents because they cannot cross the interior of I. Then the points of intersection with the first

two tangents would leave the outer polygon which breaks the nonnegativity constraints for the represented profiles.

On the other hand p0 cannot be moved outside on a straight line through p0 and the origin without leaving F . So p1

and p2 cannot simultaneously be moved closer to p∗ on the boundary curve of of F . The same property holds for any

other point p0 due to the convexity of F .

Finally, if and only if p∗ is contained in the outer polygon together with all other vertices, then the construction of

the quadrangle enclosing the inner polygon guarantees the nonnegativity of both factors of the spectral data matrix D,

cf. [20].

4



0 2 4 6 8

-3

-2

-1

0

1

2

3

4

x1

x 2

Outer polygon, inner polygon & computed inner boundary

-1 0 1 2 3 4

-2

-1

0

1

2

3

4

5

x1

x 2

Resulting AFS-sets

Figure 2: The generalized AFS for the Michaelis-Menten problem computed by geometric construction, see Sec. 3.2 and Sec. 6 of [25]. Left: The

outer polygon is plotted by a dashed line, the inner polygon by a dash-dotted line and the inner boundary curve by a solid line. The boundary curve

discretization is based on nearly 5000 points. Right: The final four AFS subsets are shown as colored sets. These regions are located between the

inner boundary curve in the interior of F and the boundary curve of F . The associated pure component profiles and the bands of feasible profiles

are shown in Fig. 3.

For any starting point p0 the quadrangle construction results in a final point p∗ whose feasibility can easily be checked

by computing the associated profile and then by testing its nonnegativity. By circulating p0 along the boundary of the

outer polygon and by regularly repeating numerical quadrangle constructions a discrete point curve is constructed.

Points which are not in F can be ignored. The points of interest in F form a discretization of the inner boundary

curve of the generalized AFS. The discrete circulation of p0 should follow some rules. For instance, all vertices of

F should be considered as starting points for the quadrangle construction as they seem to be potentially crucial for

an accurate representation of the inner boundary curve. Further, each facet of F should be discretized in a proper

way so that it is covered by equidistant starting points p0. In order to guarantee a sufficiently fine resolution of the

inner boundary curve, the algorithm requires a correspondingly large number of starting points on the boundary of

F . If the generalized AFS includes single point subsets (or very small AFS subsets), then sometimes a very fine

discretization of the curve of starting points cannot be sufficient. Therefore each edge of the inner polygon I should

be involved in at least one quadrangle construction. Fig. 2 illustrates a complete discretization of the inner boundary

curve (including parts which leave F and which are therefore meaningless for the generalized AFS construction)

for the model problem from Sec. 6 of [25], see also the following Sec. 3.2. Figure 3 shows the bands of feasible

concentration profiles which are associated with the four colored regions of the AFS. Finally, we note that in rare

cases sections of the inner boundary curve can only be correctly determined for a locally very dense sequence of

starting points.

3.2. Michaelis-Menten model problem

We reuse, see [25], for numerical experiments the Michaelis-Menten kinetic

S + K
κ1

−−⇀↽−−
κ−1

[K9S ]
κ2

−→ P + K

as a simple rank-deficient reaction system. The kinetic parameters are taken as κ1 = 30, κ−1 = 0.1 and κ2 = 3 and the

initial concentrations are cS (0) = 1, cK(0) = 0.1 and c[K9S ](0) = cP(0) = 0. The resulting AFS is shown in Figs. 2.

The pure component profiles are plotted in Fig. 3. The substrate S and the catalyst K first form the catalyst-substrate

complex [K9S ] which then decays to the product P plus K. For this reaction system with four chemical species two

mass-balance equations hold for the time-dependent concentration values

cS (t) + c[K9S ](t) + cP(t) = cS (0) + c[K9S ](0) + cP(0) = 1 and cK(t) + c[K9S ](t) = cK(0) + c[K9S ](0) = 0.1.

The right-hand sides of these equations are constants that are given by the the initial concentration values. These

two affine-linear combinations can be reformulated as a single linear dependence equation between the concentration

value functions (in the sense of linear algebra that a linear combination with at least one non-zero coefficient can
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Figure 3: Upper row of plots: The concentration profiles and spectra, all profiles are normalized with maximum equal to 1, of the four species of

the Michaelis-Menten model from Section 3.2 are shown together with the resulting superimposed mixture data. The color gradient of the mixture

spectra turns from green (at t1 = 0) to black (at tend = 7.5). These data are used for the generation of Fig. 2. See Sec. 3.2 for details on the data.

Lower row of plots: Based on the generalized AFS from Fig. 2, the sets of feasible concentration profiles are computed for each subset of the AFS

N .

represent the null function). In other words, a nonzero vector z exists so that Cz = 0. Thus C has only the rank 3

(instead of 4).

The generalized AFS is computed with parameters m = 4 and s = 3 for this model data set. The results are shown

in Fig. 2. The AFS consists of four isolated subsets. Each subset is associated with a band of feasible profiles. To

compute these bands, each subset is covered with a relatively fine mesh with more or less uniformly distributed nodes.

Then for each node point x the associated profile c = UΣ(1, xT)T is computed. The four plots of all these feasible

profiles are shown in the lower row of Fig. 3.

3.3. Geometric construction for even m larger than 4

The proposed algorithm for quadrangles can be extended to problems with a larger nonnegative rank m. If m is an

even number, then the symmetric construction remains analogous to that in Sec. 3.1, but uses more tangents in order

to enclose the inner polygon. The number of edges of the polygons being enclosed from the outside and inside equals

m. All edges of these polygons are tangents of I and all but one of its vertices are located on the boundary of F .

3.4. Geometric construction for odd m larger than 4

For an odd nonnegative rank m, we explain the procedure for m = rank+(D) = 5, namely for pentagon constructions.

For m = 7, 9, . . . the idea remains the same. For tight pentagon constructions we use again point-tangent constructions

with an equal number of tangents on both sides of the inner polygon. The construction starts with a tangent. To obtain

the inner boundary curve of the generalized AFS, a tangent line rotates in a discretized manner around the inner

polygon. The construction principles coincide with the classical Borgen plot for rank+(D) = rank(D) = 3, which uses

rotating triangles.

Let t0 be a tangent of the inner polygon. Then the procedure is as follows:

1. Compute the points of intersection p1 and p2 of t0 with the outer polygon and get the first two vertices.

2. Compute the next two edges t1 and t2 as tangents to the inner polygon with p1 ∈ t1 and p2 ∈ t2 as well as t1 , t0
and t2 , t0.

3. Compute the two new points of intersection p3 and p4 of t1 and t2 with the outer polygon. Finally, determine the

two tangents t3 and t4 running through p3 respectively p4 so that t3 , t1 and t4 , t2.

4. If the point of intersection p∗ of t3 and t4 is located in F , then it is an inner boundary point of the generalized

AFS.
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Construction of an inner boundary point using a tight pentagon

Figure 4: Construction of an inner boundary point using a pentagon in application to a model problem with rank(D) = 3 and rank+(D) = 5. The

outer polygon (black dashed line) and the inner polygon (black dash-dotted line) are fixed. The construction of the pentagon starts with the tangent

t0 (blue) of the inner polygon. Its points of intersection with the boundary of the outer polygon are p1 and p2 (blue), and the next two tangents are

t1 and t2 (red). Ths step is repeated and leads to the two tangents t3 , t4 (ochre). Their point of intersection p∗ is a point on the inner boundary curve

(purple star). The complete inner boundary curve is the dotted black line. The geometric area of the resulting generalized AFS is small. The AFS

consists of five isolated subsets marked in gray. These subsets of the AFS are located between the inner boundary curve and the boundary of the

outer polygon.

The starting edge t0 rotates around the inner polygon. As explained in the first paragraph of Sec. 3.1 any vertex of the

inner polygon has a range of possible tangents. This process results in a discretization of the inner boundary curve.

Fig. 4 explains the construction for a tight pentagon around the inner polygon for a 6 × 6 model data matrix. The

resulting inner boundary curve of the generalized AFS resulting from all pentagon constructions is the dotted line.

4. Noise handling and how the geometric construction differs from a genuinely numerical approximation

4.1. The geometric construction for noisy data

The presented algorithm works with the two fixed polygons F and I. For noisy data several aspects are to be

considered. Firstly, noise tends to break rank-deficiencies. This phenomenon is comparable to the fact that a singular

matrix to which noise is added turns almost always into a regular matrix (which, however, is poorly conditioned).

Thus one can expect for noisy data that rank(D) = rank+(D) = min(k, n). Hence, the values s and m must be

selected manually with careful consideration of the noise level in order to calculate meaningful results. Secondly, if

the nonnegativity restrictions are applied in a strict sense, then the computations for the polygons F and I can result

in empty AFS-sets. In particular, vertices of I can leave the outer polygon F (then the data contains negative entries,

e.g., after background subtraction), the set F does not include the origin or even F can be an empty set. However,

there are ways how to compute an approximation of the inner and the outer polygon for noisy data so that these

polygons are close to the respective polygons for noise-free data.

A way how to approximate the inner and the outer polygon for noisy or perturbed data for the case rank(D) = 3

is explained in [23]. The idea is to start with the computation of an approximation of the two outer polygons FS

and FC by means of the inverse polygon inflation algorithm [24] with a weakened nonnegativity constraint, namely

negative entries of small magnitude are accepted in the profiles. By using duality techniques [10, 18, 21] it is possible

to compute approximations of the two dual inner polygons IC and IS . This approach is less sensitive to noise.

The resulting polygon approximations are the basis for a subsequent geometric AFS construction. The resulting

generalized AFS allows relatively small negative entries in the spectra and concentration profiles.

4.2. Differences to numerical methods

The concept of a generalized AFS is introduced for rank-deficient problems in [25]. There is also a genuinely nu-

merical approximation method for s = 3. The algorithm inflates polygons in order to approximate the AFS-subsets.

The algorithm works with an adaptive approximation scheme including a local error estimation and includes several

7



control parameters. The decision whether a point is feasible or not is based on the reconstruction S T
= TVT and

works with a nonnegative least squares (NNLS) algorithm from [13] to check whether a nonnegative C exists so that

D = CS T. The geometric algorithm suggested in this work is completely based on the low-dimensional geometric

representation in the abstract U and V spaces. The test whether a nonnegative C exists or not is done by checking

whether the constructed polygon encloses the inner polygon or not, see also [20]. For noisy data the geometric con-

struction approach works better than the numerical approximation from [25]. The difference is that the NNLS-solver

does not allow slightly negative entries. Thus deviations from the non-negativity constraints can only be applied via

the outer polygon. In contrast to this the geometric construction works directly with the inner and the outer polygon.

As duality allows to compute the inner polygon even for noisy data this approach is more flexible.

The suggested geometric construction for rank-deficient problems is faster than the numerical method from [25] for

two reasons. On the one hand, the geometric construction of a tight quadrangle is a simple and direct step which is

easy to understand compared to the optimization procedure used in the polygon inflation algorithm where for a given

row of T all the remaining rows of this matrix are to be determined by numerical optimization. On the other hand,

the decision whether an associated nonnegative factor C exists for a certain polygon is immediately answered by the

geometric construction since the constructed polygon includes the inner polygon. This is much faster than applying

an NNLS solver in each step of the numerical algorithm. Furthermore, the NNLS solver must be called once for each

individual objective function evaluation in each individual optimization step.

5. Summary and conclusion

The geometric construction of the generalized AFS for rank-deficient matrices is an exact and effective procedure.

Originally, the geometric AFS construction was developed by Borgen and Kowalski as a tool to analyze the factor

ambiguity of MCR solutions for model data. Over the years, the elegant approach has been extended for an applica-

bility to noisy data. Unfortunately, the geometric construction of the inner boundary of the generalized AFS has (until

now) been restricted to spectral data matrices with the maximal rank three due to the complexity of the geometric

constructions. In principle, the necessary low-dimensional simplex constructions appear to be possible for any s ≥ 2.

The algorithmic hurdles for a construction of the inner boundary spheres for s > 3 (instead of the inner boundary

curve) still have to be overcome. Such problems are hard to solve since [29] points out that the NMF problem is

NP-hard for s ≥ 4.

The extension of the geometric construction to rank-deficient problems is in some sense straightforward. Nevertheless,

the algorithm as presented in this work only returns a discretization of the inner boundary curve similar to the approach

in [12]. Here, we do not present a purely analytical approach with a functional representation of the boundary curves

as presented in [3, 19, 2] for rank-regular (full-rank) problems. A main advantage of the proposed algorithm is its

low effort. The inner and outer polygons are typically easily handable and can be computed for model data as well

as for noisy data. Duality relations support the numerical algorithms and improve the stability of the computation of

the inner polygon even for noisy data. The geometric construction is not limited by the number of chemical species,

but by the number of linearly independent profiles which must equal three. In contrast to rank-regular problems, the

generalized AFS is only defined for one factor, namely the factor which carries the rank-deficiency. The other, dual

factor needs more information than contained in the first s singular vectors.

The new generalized AFS concept for rank-deficient problems augments the arsenal of techniques such as Borgen-

Rajko-plots, grid search or polygon inflation for rank regular problems as well as the profile-based methods MCR-

BANDS [5, 27] and N-BANDS [17, 16]. All these methods serve to analyze and to determine the factor ambiguity of

MCR-problems.
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