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Abstract

Linearly dependent concentration profiles of a chemical reaction can result in a spectral data matrix with a chemical

rank smaller than the number of absorbing chemical species. Such a rank-deficiency is problematic for a factor

analysis as some information on the pure component spectra cannot be recovered from the mixture data. Matrix

augmentation can break rank-deficiencies and enable successful pure component recovery. In contrast to this, an

artificial breakdown of a rank-deficiency can be caused by a numerical finite precision simulation of the underlying

kinetic model and can fake a successful MCR analysis. This work discusses the problem and points out some remedies.
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1. Introduction

The starting point of this note on rank-deficiency and numerical modeling was a discussion among some partici-

pants of a chemometric conference in 2022 on the Michaelis-Menten kinetics. There were different points of view on

the nature of the rank-deficiency underlying the Michaelis-Menten model and on the possibility of a reconstruction

of all pure component spectra from model data. We take this discussion as an impulse to investigate the interplay

between rank-deficiency and the numerical modeling of rank-deficient chemical reaction systems by a computer. In

this study, we focus on the Michaelis-Menten system and consider model data and experimental spectral data from

rhodium-catalyzed olefin hydroformylation. We emphasize that the properties studied are of general importance for

rank-deficient chemical reaction systems.

1.1. On the concepts of rank and rank-deficiency in chemometrics and mathematics

It is worth discussing the concepts of rank and rank-deficiency in chemometrics and mathematics in a comparative

way.

1. Rank of a matrix: The (mathematical) rank of a matrix is defined as the dimension of its column space (or

row space), or equivalently, the maximal number of linearly independent columns (or rows) [10]. The rank

equals the number of nonzero singular values of the matrix, which result from a singular value decomposition

(SVD). In linear algebra, a matrix M ∈ R
m1×m2 is said to be rank-deficient if rank(M) < min(m1,m2). These

strict definitions of the rank and rank-deficiency are not used in this work because they do not tolerate even a

marginal amount of noise or small rounding errors. Small perturbations are unavoidable in experimental data

or in any numerical computation.

2. Numerical rank of a matrix: Numerical mathematics provides the notion of the numerical rank of a matrix.

The numerical rank or ε-rank of a matrix is the number of its singular values that are greater than a certain

small threshold parameter ε > 0. For example, MatLab uses ε = max(m1,m2)eps(‖M‖2) with M ∈ R
m1×m2 .

Therein eps(z) is the floating-point relative accuracy, namely the distance from the absolute value of z to the

next larger floating-point number, and eps(1) is the so-called machine precision, which equals 2.2204E-16 for

double precision (64-bit) computer arithmetic. Furthermore, ‖M‖2 is the spectral norm of the matrix M, which

is equal to its largest singular value. This choice of ε serves to ignore all singular values less than ε whose origin

can be seen in the finite precision arithmetic of a computer and in the iterative nature of the SVD algorithm.

This justifies the definition of the numerical rank. This notion of the numerical rank can be extended to the

definition of a numerical rank-deficiency only by using the numerical rank of M. See [9] for more details.

3. Chemical rank of a data set: The issues of defining the concept of a rank are even more difficult when consid-

ering matrices with experimental (chemical) data. For example, Malinowski [16] has devoted some sections in

his book “Factor Analysis in Chemistry” to the determination of the number of chemical factors and to methods

of rank determination; see also [24, 25] for chemical rank determination by subspace comparison and morpho-

logical scores. Chemometric literature uses the notion of the chemical rank, which is also called a pseudo-rank
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or sometimes just a rank. The noise level in experimental data is typically much larger than the level of per-

turbation due to rounding errors in numerical calculations. Therefore, the numerical rank is not applicable to

matrices of experimental, measured data. The chemical rank of a chemical data matrix is the number of chem-

ically relevant singular values, i.e. the number of singular values greater than a certain tolerance εchem. The

tolerance parameter is not always easy to determine, and estimating the number of chemical species is often a

problem in chemometrics.

To establish the notion of rank-deficiency for data sets in chemometrics, we consider the multivariate curve

resolution (MCR) problem. To this end, we look at a spectral measurement of k spectra at n spectral channels

of an ongoing chemical reaction (or other systems) and store the spectra in a k × n spectral data matrix D.

According to the Lambert-Beer law, the MCR problem is to find an approximate factorization

D = CS T + F (1)

with a k × s matrix factor C which contains in its columns the concentration profiles of the s pure species. The

columns of the n× s matrix factor S are the associated pure component spectra. The matrix elements of the error

term matrix F are ideally equal to zero. Otherwise, they can comprise small measurement errors, deviations

from bilinearity and other perturbations. In chemometrics, an experimental data matrix D is said to be rank-

deficient if the chemical rank is less than the number s of chemical species. If a chemist or data analyst is aware

of rank-deficiency in a chemical data set, then it can be resolved by matrix augmentation, standard addition and

other variations of the experiment, see, e.g., [19, 7]. This work does not focus on experimental techniques to

resolve the rank-deficiency, but on successfully modeling rank-deficient data sets.

4. Nonnegative rank of a matrix: A further definition of a rank number refers to the factorization problem (1)

with F = 0. A nonnegative k × n matrix D has the nonnegative rank m (this is written as rank+(D) = m) if

m is the smallest integer such there exist nonnegative matrices C ∈ R
k×m and S ∈ R

n×m with m columns. The

nonnegative rank of a matrix is closely related to rank-deficiency, namely when rank(D) < rank+(D), see [5] or

Chap. 3 in [8]. Then more than rank(D) nonnegative profiles are required to find a nonnegative factorization of

D.

Next we make use of the different definitions of rank numbers and and use them to investigate the Michaelis-Menten

kinetics.

1.2. The Michaelis-Menten kinetics

The Michaelis-Menten kinetics including the enzyme E, the substrate S, the enzyme-substrate complex ES and

the product P reads

S + E
k1

−⇀↽−
k2

ES
k3

−→ P + E. (2)

The associated system of nonlinear ordinary differential equations (ODE) is given by

dcS(t)

dt
= −k1cE(t)cS(t) + k2cES(t),

dcE(t)

dt
= −k1cE(t)cS(t) + (k2 + k3)cES(t),

dcES(t)

dt
= k1cE(t)cS(t) − (k2 + k3)cES(t),

dcP(t)

dt
= k3cES(t)

(3)

where cS(t) is the concentration value of S at the time t and so on. The number of chemical species of the Michaelis-

Menten reaction (2) equals four, but the detectable rank (or chemical rank) of D is smaller. According to Amrhein

et. al. [1], see also [7], it holds that

detectable rank = min(number of reactions + 1, absorbing species).

Pairs of a forward and backward reaction (which finally define equilibria) count as a single reaction. For the system

(2) with two reactions/equilibria and four chemical species the detectable rank is 3. Hence, rank(D) = 3 if noise

and other rank-increasing impacts of the error matrix F in (1) are absent. In Sec. 3.2 we explicitly discuss the linear

dependence underlying the system (3).

However, numerical solution by a time discretization of (3) and subsequent approximate numerical integration

often produces a spectral data matrix with the rank 4. Additionally, we observe that this rank-increasing numerical
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Figure 1: A rank-deficient experimental data set from the rhodium-catalyzed olefin hydroformylation process (left). The 30 largest singular

values of this data set (middle) clearly indicate the rank 3 whereas four chemical species are active. The pure component analysis leads to four

concentration profiles (right). The dashed concentration profiles of the olefin (S) and of the aldehyde (P) refer to the left axis. The much smaller

concentration values of the catalytically active species, namely the hydrido complex (Cat) and acyl complex (CatS), correspond to the right axis.

error can sometimes be used to reconstruct missing chemical information, which is an artificial effect of the numerical

simulation. This means that not only the numerical rank is 4, but the chemical rank is also 4. Poor numerical

simulation is responsible for this behavior. Such a reconstruction is not possible for experimental spectral data (if

(3) is assumed and, for example, there are no additional diffusion terms). This work describes and analyzes these

relationships.

1.3. Rhodium-catalyzed olefin hydroformylation and the Michaelis-Menten model

In order to demonstrate that our model assumptions can be justified by experimental spectroscopic data sets, we

consider the rhodium-catalyzed olefin hydroformylation with in-situ high-pressure FTIR spectroscopy, see [15, 14]

for details. A certain spectral window enables an excellently resolved and isolated spectroscopic analysis of the

catalyst behavior. We use a spectroscopic measurement with 300 spectra in the time interval [4.9, 276.2] min at

879 wavelengths in the spectral windows [1963.8, 2107.4]∪ [3410.9, 3478.6] cm−1. Comparable data sets have been

analysed in other publications, see, e.g., [21], where also an analysis has been presented within the U- and V-spaces

which is closely related to the factor ambiguity analysis as presented in Sec. 6 of this work.

In-situ metal-organic catalysis provides many examples of reaction systems with an underlying Michaelis-Menten

kinetics. Garland and coworkers [4] and other groups have presented precise spectroscopic analyses of such reaction

systems. Typically, not only the substrate (an olefin species) and the product (an aldehyde) are spectroscopically

observable in these measurement, but also the catalytically active species. The crucial point is that the sharp and

isolated peaks of FTIR spectroscopy make it possible to observe the spectral signature of the catalyst and its precursor

and that these signals are not covered by the peaks of the olefin and the aldehyde with their much higher concentration

values. In detail, in-situ FTIR spectroscopy allows us to identify the acyl complex and the hydrido complex within

a certain wavelengths window and to study the dynamics of these metal-organic complexes. Thus, all four chemical

species of the Michaelis-Menten system (2) contribute to the measured data, but the chemical rank of the data set is

only 3. This is illustrated with the help of the singular values plotted in Fig. 1. We observe a rank-deficiency in this

experimental data set. Finally, the Michaelis-Menten kinetics enables a very good fit of to the chemometrically found

concentration profiles [15, 14].

1.4. Organization of the paper

First, Section 2 presents the numerical discretization of the Michaelis-Menten system and discusses the impact of

finite precision ODE solvers on the numerical rank of the modeled concentration factor matrix C. Section 3 shows a

way how to solve the kinetic equations (3) in a way so that the finite precision of the ODE solver cannot increase the

numerical rank of the concentration factor. Section 4 shows how a poor numerical solution of the Michaelis-Menten

model can result in a factor C with the numerical rank 4 and how this effect can result in misinterpretations. Section 5

discusses how to add noise to the model. A geometric interpretation of such rank-deficiencies in the abstract U- and

V-spaces is given in Section 6.

2. Numerical discretization and modeling

For numerical experiments with the Michaelis-Menten model (3) we use the kinetic parameters k1 = 20, k2 = 0.1

and k3 = 3. The initial concentration values are taken as cS(0) = 1, cE(0) = 0.001 and cES(0) = cP(0) = 0.

The differential equation is adaptively solved with MatLab ODE solvers on the time interval [0, 700] and output is
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Figure 2: Concentration profiles (left) and spectra (center) for the Michaelis-Menten problem introduced in Sec.2. The color code is

(S,E,ES,P)=(blue,red,ochre,purple). From the full series of mixed data the first five spectra are plotted and then only every fifth spectrum (right

plot). The spectra change rapidly only in the initial phase of the reaction.

ODE solver RelTol AbsTol σ4(C) max(k, s)eps(‖C‖2) rank(C) σ4(Ĉ) rank(Ĉ)

ode15s 1E-3 1E-6 8.2727E-13 8.8818E-14 4 1.7877-18 3

ode15s 1E-9 1E-12 1.4950E-13 8.8818E-14 4 4.1785E-18 3

ode15s 1E-11 1E-10 1.3806E-14 8.8818E-14 3 1.7201E-18 3

ode23s 1E-2 1E-5 4.77640E-13 8.8818E-14 4 2.8090E-18 3

ode23s 1E-3 1E-6 5.3463E-14 8.8818E-14 3 1.3395E-18 3

ode45 1E-3 1E-6 3.0295E-18 8.8818E-14 3 1.2.2439E-18 3

Table 1: The table shows the tolerance parameters ’RelTol’ and ’AbsTol’, the 4th singular value and the numerically computed rank of the

concentration factor matrix C of the Michaelis-Menten system (3) for the three MatLab ODE solvers ode15s, ode23s and ode45. Numerically, the

concentration factor matrix has the rank 4 if the numerical precision of the ODE solver is not sufficient. The last two columns refer to the matrix

factor Ĉ as computed by the stable approach explained in Sec. 3.2.

presented for 100 equidistant nodes. The pure component spectra are built from the scaled, shifted Gaussians plus

offsets

s1(ν) =
5

2
exp

(
−

(ν − 20)2

200

)
+ 0.075, s2(ν) =

25

2
exp

(
−

(ν − 40)2

200

)
+ 0.075,

s3(ν) = 10 exp

(
−

(ν − 60)2

200

)
+ 0.065, s4(ν) = exp

(
−

(ν − 80)2

100

)
+ 0.065.

(4)

These functions are numerically evaluated in the interval [0, 99] at n = 100 equidistant nodes. With C ∈ R100×4 and

S ∈ R
100×4 we get D = CS T ∈ R

100×100. The spectra and concentration profiles as well as the time-series of the

mixture spectra that form the rows of D are shown in Fig. 2.

Due to the linear dependence of the concentration profiles, the rank of the matrix factor C is equal to 3; see Section

3.2 for a justification. Together with rank(S ) = 4 we get that rank(D) = 3. Thus, D is a rank-deficient matrix. If no

pair of nonnegative 3-column matrices C and S exists with D = CS T , then the nonnegative rank equals rank+(D) = 4,

cf. Sec. 1.1. However, numerical inaccuracies of the ODE solver (caused by the so-called discretization error) and

rounding errors can in some cases result in a numerical evaluation of the rank of D to be equal to 4.

Next, we study the dependence of the fourth numerically computed singular value for the numerically solved

Michaelis-Menten model. The computations are executed for varying error tolerance parameters controlling the ac-

curacy of some prominent MatLab ODE solvers. For these computations we apply the ODE solvers ode15s, ode23s

and ode45 of MatLab. The stiff ODE solvers ode15s and ode23s use adaptive step-length variable-order strategies in

combination with numerical differentiation formulas. The routine ode45 is based on an explicit Runge-Kutta formula,

namely the Dormand-Prince pair, which combines a 4th order Runge-Kutta scheme with a 5th order error estimation.

The routines work with the scalar relative error tolerance ’RelTol’ (default value 1E-3) and the absolute error tolerance

’AbsTol’ (default value for all components 1E-6) for error control. Table 1 shows the results for solving the ODE (2)

for the parameter settings and initial concentrations given in the first paragraph of this section. The small concentra-

tions of ES and E show rapid relative changes in the initial phase of the reaction. Therefore, numerical solvers for

stiff ODEs seem to be very appropriate. The tolerance parameters must be set smaller than the default choice in order

to reproduce numerically the correct rank 3. For the Runge-Kutta solver ode45 the default parameters are sufficient to

get the correct order due to the high fifth order error estimation. Next, we discuss how to enforce a correct numerical

rank determination and how a rank-4 factor C can fake a successful and complete MCR analysis.
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3. How to enforce a low-rank solution

3.1. Structure-preserving numerical solvers

Discrete numerical solutions of ordinary (ODE) or partial (PDE) differential equations do not necessarily exhibit

the properties which hold for their exact solution functions. This is a well-known phenomenon in numerical mathe-

matics. For instance, Hamiltonian systems define ODEs for which numerical solvers often yield solutions violating

the preservation of energy and angular momentum. However, so-called symplectic solvers can preserve these conser-

vation laws [11]. Another example are the Navier-Stokes on the flow of incompressible fluids whose discrete solutions

(by finite differences) show more diffusion than the original partial differential equations. Most often the additional

so-called numerical diffusion should be as small as possible.

In a similar way, numerical ODE solvers for rank-deficient systems tend to increase the numerical rank of the

matrix factor C as small errors break the linear dependence of some columns of C. However, one can sometimes

construct algorithms which enforce and preserve the correct rank. For rank-deficient problems the kinetic ODE

systems include redundant equations so that some of the right-hand sides of these systems can be expressed as linear

combinations of others. For the theoretical background of such linear dependencies for rank-deficient systems see [2].

The work [6] presents an approach for finding a smallest-dimensional representation of a system of kinetic equations

by using the so-called extent of a reaction or degree of advancement and also discusses limitations of these techniques.

3.2. Two key equations of the Michaelis-Menten system

Two independent mass balance equations can be formulated for the substrate species and for the enzyme/catalyst

of the Michaelis-Menten system (3)

dcS(t)

dt
+

dcES(t)

dt
+

dcP(t)

dt
= 0 and

dcE(t)

dt
+

dcES(t)

dt
= 0. (5)

Other linear relations can also be stated, but all of them can be traced back to (5). Time integration of (5) yields the

two affine dependencies

cS(t) + cES(t) + cP(t) = ω1 and cE(t) + cES(t) = ω2

with constantsω1 and ω2. (These two equations can be used for a mean centered representation [17].) These constants

are determined by the initial concentration values at t = 0, namelyω1 = cS(0)+cES(0)+cP(0) andω2 = cE(0)+cES(0).

This makes it possible to eliminate two equations from (3) since the equations

cES(t) = cE(0) + cES(0) − cE(t)

cP(t) = cS(0) + cP(0) − cE(0) − cS(t) + cE(t)
(6)

serve to represent cES(t) and cP(t) if cS(t) and cE(t) are known. The reduced Michaelis-Menten system reads

dcS(t)

dt
= −k1cE(t)cS(t) + k2(cE(0) + cES(0) − cE(t)),

dcE(t)

dt
= −k1cE(t)cS(t) + (k2 + k3)(cE(0) + cES(0) − cE(t)).

(7)

Hence, an ODE solver is only required to determine the concentration profiles of S and E by solving the two-

dimensional ODE (7). The two remaining concentrations of ES and P can be evaluated by (6). With this modification

a low accuracy of the numerical ODE solver cannot lead to a false rank of the concentration factor. To this end, we

form the row vector of concentration functions

Ĉ(t) = [cS(t), cE(t), cE(0) + cES(0) − cE(t), cS(0) + cP(0) − cE(0) − cS(t) + cE(t)]. (8)

These functions span only a three-dimensional space. This is easy to verify because

Ĉ(t)
(
0, 1, 1, 0

)T
= cE(0) + cES(0) = ω2 and Ĉ(t)

(
1,−1, 0, 1

)T
= cS(0) + cP(0) − cE(0) = ω1 − ω2.

If ω2 = 0 or ω1 − ω2 = 0, then a nonzero vector z has been determined with Ĉz = 0. If ω2 and ω1 − ω2 are nonzero,

then

z =
(
1,−1, 0, 1

)T
/(ω1 − ω2) −

(
0, 1, 1, 0

)T
/ω2 , 0

and Ĉ(t)z = 0. This shows the linear dependence of the functions in Ĉ(t). A time discretization of Ĉ(t) with respect to

a k time steps t1 < t2 < · · · < tk leads us to the k × 4 matrix Ĉ. A numerical SVD of Ĉ (or D = ĈS T ) based on (7) and

(8) and with k = 100 and equidistant nodes results in a fourth singular value of Ĉ (or D) around 1E-18 (even smaller
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Figure 3: A least squares approximation of the four true spectral profiles (4) with respect to the three-dimensional basis of the three singular vectors

corresponding to the spectral data matrix D with C computed according to (7) and (8). These “spectra” contain major negative entries and are very

different from the true spectra shown in Fig. 2. The solution is not feasible. This confirms that the rank-deficiency is correctly treated.

than the machine precision) and a numerical rank of Ĉ equal to 3. Table 1 shows in its last two columns the results.

In order to test to what extent the basis of the three right singular vectors (the columns of V of the truncated singular

value decomposition of D) is suitable for an expansion of the true four spectral profiles (4) we execute target testing

based on the following MatLab commands (solution of a least-squares problem)

coeffs = V\S; plot(V*coeffs); residual=norm(V*coeffs-S) (9)

and get a residual equal to 50.928 and the four spectral profiles shown in Fig. 3. These profiles have major negative

parts and are very different from the true spectra shown in Fig. 2; this means that S is not in the data space of the

columns of D. This confirms that the rank-deficiency is not resolvable.

4. How a lack of accuracy in numerical modeling can lead to artificial spectral recovery

The last section has shown that the pure component factors of a rank-deficient problem cannot be resolved if the

kinetic equations are solved in a careful way by means of a reduced set of ODEs. This is a correct and expected result.

Next, we show how an inadequate numerical solution approach can lead to an artificially successful pure component

recovery as a consequence of a finite precision solution of the model equations. This is an unwanted numerical

side-effect that cannot be reproduced for experimental spectral data.

To this end, we discuss again the numerical solutions of (3) by the MatLab solver ode15s which typically results

in a concentration factor matrix C of the numerical rank 4; smaller tolerance parameters are required to achieve a

concentration factor of the numerical rank 3, see Table 1. For instance, with the MatLab default values RelTol=1E-3

and AbsTol=1E-6 we first compute the matrix C with the numerical rank 4 and then the truncated SVD D = UΣVT of

the rank-4 matrix D = CS T . Then the four column vectors of V span a space which is capable of a good recovery of all

spectral profiles. In order to show this, we re-use the MatLab commands (9) and get the small reconstruction residual

1.4958E-3. The pure component spectra are almost representable from the right singular vectors and they are nearly

identical to the original spectra shown in Fig. 2 (right plot). This is a surprising result as the rank-deficiency seems

to have no impact - the predicted loss of information does not occur. Thus, the chemical rank was also incorrectly

modeled for this the matrix.

This phenomenon is analyzed next by decreasing the error tolerance parameters of the ODE solver and simulta-

neously monitoring the numerical rank of D as well as the reconstruction residual. The stiff ODE solver ode15s is

used to solve (3) with RelTol in the interval [1E-9, 1E-12] and simultaneous parameter setting AbsTol = RelTol/1000.

The left plot in Fig. 4 shows the fourth singular value σ4(D) of D = CS T . Only for the smallest RelTol settings does

the numerical rank of D equal 3 and this region is plotted in red. Blue color indicates that D has the numerical rank

4. The right plot in Fig. 4 shows the associated reconstruction error of the spectral profiles according to the MatLab

commands (9). Where the residual is small (D has the numerical rank 4) the four true spectral profiles are recoverable

from the right singular vectors of D. The largest error is observed if D has the numerical rank 3 (red color). Only this

region represents the true behavior of a rank-deficient system where the expected loss of information is observed.
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Figure 5: White Gaussian noise of any amplitude can be added to the two profiles (7) without changing the numerical rank of the concentration

factor if it is constructed according to (8). The left plot shows the concentration profiles for an SNR of 25dB. Due to the correctly reproduced

rank-deficiency, the rank-4 factor of the true spectral profiles cannot be recovered. The expansion of the true spectral profiles with respect to the

basis of the four right singular vectors being associated with the four largest singular values results in the profiles shown in the right plot. These

profiles (aside from noise) reproduce those shown in Fig. 3. This demonstrates the operability of the approach.

5. How to add noise to the concentration profiles without breaking the rank-deficiency

The analysis presented so far indicates how to add noise to the model data without destroying the rank-deficiency

in the sense of chemical rank. Now, we discuss this point in detail. First, we demonstrate an inappropriate approach

and add white Gaussian noise to all columns of C by using the MatLab function awgn(C, 200) where C has been

determined from solving (3) with MatLab routine ode15s with high precision RelTol=1E-10 and AbsTol=1E-13.

Adding noise to the columns of C simulates the effects of an imprecise ODE solver, while experimental noise is

simulated by adding Gaussian noise to the matrix elements of the measured data matrix D. As indicated by Table 1

this guarantees a concentration factor C with the numerical rank 3. Section 4 predicts that the true spectral profiles

are not recoverable from the three right singular vectors of D. The signal-to-noise ratio (SNR) of the noise is 200dB.

(For this very low noise level, a plot of the profiles looks like those in Fig. 2.) After noise addition the numerical rank

of the product matrix D = CS T equals 4 (which is not very surprising) and its fourth singular value equals 6.6785E-8.

Re-running the commands (9) yields a residual of the value 1.0711E-6. This shows that the true spectral profiles are

very well reconstructable from the right singular vectors of D. Therefore, this is a biased type of noise addition, which

artificially allows the rank-deficiency to be broken and to reconstruct the true spectral profiles from the additional

information contained in the noisy data.

How can noise be added to C without breaking the rank-deficiency of D? The straightforward approach is to

compute the two profiles of the species S and E according to (7). Any, even-low accuracy ODE solver can be used.

Regardless of the numerical precision of the solver, the numerical rank of the resulting two-column matrix necessarily
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Figure 6: For the spectral data matrix D generated with cE(0) = 0.1 and ode15s with RelTol=1E-3 and AbsTol=1E-6 the numerical rank of D is

4. Exploring the geometry in the two-dimensional U- and V-spaces (spanned only by the respective three dominant singular vectors) by means of

the FACPACK module ‘Duality & AFS’ no pair of triangles can be constructed which each enclose the data representing points (marked by gray

circles) and which are simultaneously contained in the outer polygon (marked by solid black curves). The plotted colored triangles are not feasible.

The non-constructabililty of a nonnegative pair of factors C and S indicates that rank-3 factors cannot solve the factorization problem for D. This

is consistent with the rank-deficiency.

equals 2. Then the concentration factor C is formed according to (8). By construction, this factor has the numerical

rank 3. Figure 5 (left) shows the concentration profiles with the low SNR ratio of 25dB. (We note the proposed

operation of noise addition to C has no practical importance for simulating noise addition to the data set D. Our

intention is to demonstrate that the reduced two-species subsystem can be altered in any way, e.g., with noise, without

changing the rank of the four-species factor C.) Due to the correctly reproduced rank-deficiency, the rank-4 factor of

the true spectral profiles cannot be recovered. The expansion of the true spectral profiles with respect to the basis of the

four dominant right singular vectors is shown in the right plot of Fig. 5. These profiles (aside from noise) reproduce

those shown in Fig. 3. The true profiles cannot be recovered. This demonstrates the operability of the approach. Noise

addition is not restricted to the concentration factor and is also possible for the spectral factor S . Noise addition to the

n × 4 matrix S cannot increase its numerical rank that is always bounded by its second dimension 4. Usually, noise is

directly added to the spectral data matrix D. If a precise rank-3 factor C is used to form D = CS T as a rank-deficient

rank-3 matrix, then noise addition to D will increase its numerical rank. However, this non-biased noise cannot be

used in order to recover the four true spectral profiles.

6. Geometric analysis in the U- and V-space

Rank-deficiency can also be well-understood by a geometric representation in the abstract U- and V-space [3, 22],

which are spanned by the bases of left and right singular vectors of D. The letters U and V refer to the SVD D =

UΣVT . The columns of U contain the left singular vectors and the columns of V the right singular vectors. The

singular values form the diagonal of the diagonal matrix Σ.

Next, we consider the spectral data D generated by ode15s with RelTol=1E-3 and AbsTol=1E-6. The low accu-

racy results in the increased numerical rank 4 of D, cf. Table 1. We observe that for this data set the third and the fourth

singular values are very small, namely σ3 = 0.0875 and σ4 =4.2145E-11. This results in a qualitatively different be-

havior in the U- and V-space than that of the experimental rhodium catalyzed hydroformylation process, see Sec. 1.3.

To mimic the experimental finding in our model, we have increased the absorptivities of E and ES by a factor of 100.

After this change, the observations on the behavior of the ODE solver made in the previous sections are still valid.

Then we get σ3 = 11.954 and σ4 =9.4156E-8. Because of the large ratio σ3/σ4 >1E8, we first consider a truncated

SVD based on only s = 3 singular vectors so that the associated abstract U- and V-spaces are (s−1 = 2)-dimensional.

In these spaces the convex hull of the vectors

ai :=
((UΣ)(i, 2 : s))T

(UΣ)(i, 1)
(10)

for i = 1, . . . , k is the inner polygon in the V-space for a k × n matrix D. The convex hull of

b j :=
VT (2 : s, j)

VT (1, j)
(11)
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Figure 7: In the three-dimensional V-space a feasible solution can be constructed, see Sec. 6 for details on the data set, namely D is generated by

ode15s with RelTol=1E-3 and AbsTol=1E-6. The two-dimensional V-space as shown in Fig. 6 (right plot) is embedded in the 2D plane (α, β, 0).

The data representing vectors are plotted by red stars and the almost planar inner polyhedron is shown in light red. The outer polyhedron is the

large gray set which encloses the blue tetrahedron. The four vertices of this tetrahedron represent the true spectra, namely the columns of the matrix

factor S as also shown in Fig. 2.

9



for j = 1, . . . , n is the inner polygon in the U-space. Figure 6 shows these data representing vectors ai and b j by gray

circles in the respective abstract spaces. The associated outer polygons are plotted by bold black lines and represent

the nonnegativity constraints. A feasible nonnegative factorization of D with three-column factors C and S T would

correspond to a pair of triangles which enclose the respective inner polygon each and which are enclosed in the

respective outer polygon. The FACPACK software [21] (we have used the Duality & AFS module) allows to try out

such triangle constructions. The two triangle constructions are not independent, but entangled by so-called duality

relations [12, 18, 20]. The results of such a non-successful triangle construction are shown in Fig. 6. In both cases a

single vertex of a triangle has left the outer polygon and also an edge intersects the interior of the inner polygon. No

feasible triangles can be constructed. This is a clear indicator for a rank-deficiency of the data matrix D. The existence

of a feasible quadrangle implies that the nonnegative rank is 4.

In a second step we consider the same construction, but now with a fourth singular vector. The vectors (10) and

(11) are computed for s = 4. Fig. 7 shows the V-space representation in three dimensions. This plot embeds the

two-dimensional V-space as shown in Fig. 6 (right plot) in the 2D plane (α, β, 0) through the origin, cf. [23]. Here the

data representing vectors (10) are plotted by red stars and the almost planar inner polyhedron in shown in light red.

Its volume in three dimensions is small, namely 8.1419E-10. In contrast to this, the approximate two-dimensional

volume (area) in the V-space is about 0.42031. The reader can roughly check this by estimating the area of the inner

polygon in the right plot of Fig. 6.

These findings suggest that the fourth singular value should not make a significant contribution to the system,

and this problem should be regarded to be of rank-3 with rank-deficiency. Here, however, the spectral data appears

as a rank-4 problem with no rank-deficiency due to the inappropriate numerical modelling. Moreover, the further

dimension helps to find a nonnegative factorization. These geometric relations are demonstrated in Fig. 7 where the

outer polyhedron is the large gray set enclosing a blue tetrahedron which again encloses the inner polyhedron. The

four vertices of the blue tetrahedron represent the true spectral profiles, namely the columns of the matrix factor

S . Together with the associated construction in the U-space, where also a dual tetrahedron with the corresponding

properties can be constructed, this proves that this case presents itself as a rank-4 problem with no rank-deficiency,

despite the reaction kinetics. In a correctly modelled system, the fourth singular value should contain no additional

information that enables the reconstruction of the original factorization.

Geometrically, this unsuitable modeling approach of a four-component rank-deficient system is characterized by

an almost flat inner polyhedron for which tetrahedron constructions are possible and for which the corresponding

triangle constructions in the planes (α, β, 0) in the U- and V-spaces are not possible. The considered geometric

construction approach is stable in a sense that numerical errors which have made D to a rank-4 matrix do not harm

the construction. These relationships also hold true for higher dimensions, ergo for systems with a larger number of

chemical species.

7. Conclusion

The first letters of each sentence on the preface of the classic textbook Analysis of Numerical Methods by Isaacson

and Keller [13], when put together, make up the sentence “Down With Computers And Their Lackeys”. This is

a critical, well-hidden and surprising message for a book on numerical methods. Is this judgement on computers in

general too harsh? After all, computers have played such a central role in sciences, including chemometrics. However,

computational results should always be viewed critically and accompanied by numerical analysis.

We have shown that discretization errors of numerical ODE solvers are a pitfall for the numerical modeling of

rank-deficient systems (here for the Michaelis-Menten system). The rank-deficiency can be destroyed and the result-

ing inaccurate model data can show very different behavior to that observed with experimentally obtained spectral

data. However, by increasing the numerical accuracy or reducing the dimension of the ODE, the rank-deficiency

can be reproduced numerically to such an extent that numerical modeling of such systems remains a valuable tool

for chemometric analysis. Furthermore, our analysis is closely related to the question how to add noise to a model

without breaking the rank-deficiency.
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