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Abstract

We present new ideas underlying a self-modelling factor analytical method which allows to extract pure component
spectra and the associated concentration profiles from a setof spectroscopic measurements. The usefulness of the
method is demonstrated and compared with established toolsfor model problems and for a system from catalytic
hydroformylation by Rhodium complexes both with overlapping component spectra. Self-modelling methods tend to
minimize the overlap of the recovered spectra, which can result in an unwanted distortion of the spectra and concen-
tration profiles. For strongly overlapping spectra a penalty condition on a specific singular value of the absorptivity
matrix factor and a global decomposition approach are appropriate tools to construct improved factorizations.
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1. Introduction

Chemometrics is the science of extracting from
chemical data (like spectroscopic data) useful informa-
tion on the explored chemical system by means of nu-
merical methods. A typical and challenging problem is
a pure component decomposition of a chemical multi-
component system in which a chemical reaction is mon-
itored by a sequence of spectroscopic measurements;
e.g. absorbance spectroscopy like infrared (IR, FT-IR)
or ultraviolet (UV) spectroscopy.

The aim of this paper is to present a numerical
method which allows to extract from spectroscopic
measurements of a multi-component chemical system
the spectra of the underlying pure components together
with the associated concentration profiles.

The paper is organized as follows. In the remaining
part of Sec. 1 the matrix formulation of the Lambert-
Beer law is stated. In Sec. 2 the spectral recovery prob-
lem and its mathematical background are introduced. In
Sec. 3 the Pure Component Decomposition algorithm is
presented. In Sec. 4 several spectral recovery algorithms
are applied to a model problem and FT-IR spectra from
Rhodium-catalyzed hydroformylation.

1.1. The Lambert-Beer law in matrix form

In its most simple (scalar) form the Lambert-Beer law
states that the absorbance of light depends on the prod-

uct of the absorptivity, the concentration of the absorb-
ing species and on the path length, which is assumed
constant in the following. This idealized form of the
Lambert-Beer law holds only in the absence of error
sources like noise and nonlinearities. For any mixture of
s absorbing species the total absorbance is (once again
in an idealized form) the linear superposition of the ab-
sorbances of the participating species. Further one can
consider a number ofk spectra (in time) from a (react-
ing) chemical system;k can also be the total number
of spectra gained from repeated experiments. Thesek
spectra are given atn frequencies (or spectral channels)
and can be inscribed on the rows of the absorbance ma-
trix A. Then the matrix form of the Lambert-Beer law
reads

A = CÂ. (1)

A ∈ R
k×n Absorbance matrix;k measurements,

n frequencies,

C ∈ R
k×s Concentration matrix; thejth row gives the

concentrations of the species 1, . . . , s for the

jth measurement,

Â ∈ R
s×n Absorptivity matrix; thejth row contains the

absorptivity vectors (spectra),j = 1, . . . , s.
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The bilinear model (1) is the basis for the subsequent
factorization analysis in which we try to recover for
given (measured)A the unknown factorsC andÂ.

2. Model-Free Analysis of Spectral Data

Spectral measurements can be used to fit a mechanis-
tic model to the measurement. This is called amodel-
based analysis. Typically the degrees of freedom of
the model (like kinetic constants or scaling constants if
spectra from spectral libraries are fitted to the problem)
are determined in a least-squares sense. This means that
the Euclidean norm of the residual, which is the differ-
ence of the measured data and the fitted-model data, is
minimized. For a survey on model-based chemometri-
cal methods see Chapter 4 in [1] or [2].

In contrast to a model-based spectrum analysis we
consider amodel-free analysishere. The model-free ap-
proach is also called aself-modelling curve resolution
technique, a name which goes back to the early work
of Lawton and Sylvestre [3, 4]. Recent references on
factor analytical and model-free methods are [1, 5].

2.1. The spectral recovery problem

The spectral recovery problem is a so-calledin-
verse problem, namely to find for a given measurement
the generating factorization (1) without anya priori
knowledge of the components, pure component spec-
tra and/or the concentration profiles. In chemometrics
a solution tool for the spectral recovery problem is of-
ten called a self-modelling method. We start with the
following matrix factorization problem.

Problem 1 (F ). For a given matrix
A ∈ R

k×n find an integer s≤ min{k, n} and factors C∈
R

k×s, Â ∈ R
s×n so that

f (C, Â) = ‖A−CÂ‖F

is minimized. (‖ · ‖F denotes the Frobenius norm [6].)

A solution of the factorization problem can always be
constructed by means of the singular value decomposi-
tion, see Section 2.3. The matrix factorsC, Â of the
solution are usually calledabstract factors. According
to (1) the columns ofC should describe the concentra-
tion profiles and the rows of̂A should form the pure
component spectra. Unfortunately these abstract factors
most often do not comply with these requirements. It is
not even guaranteed that the components ofC are non-
negative numbers.

Therefore we reformulate the factorization problem
by adding several penalty terms. These weighted

penalty terms allow us to impose various restrictions
on the solution, e.g. componentwise non-negativeness
of the matrix factors, smoothness of the absorptiv-
ity/concentration functions and further restrictions. For
a discussion on the use of penalty functions versus hard
constraints for self-modelling curve resolution tech-
niques see Gemperline and Cash [9].

Problem 2 (S  ). For a given
matrix A ∈ R

k×n find an integer s≤ min{k, n} and fac-
tors C∈ R

k×s, Â ∈ R
s×n so that

f (C, Â) = ‖A−CÂ‖F +
p∑

i=1

γigi(C, Â) (2)

is minimized.
The p penalty functions gi are weighted by the (small)
regularization parametersγi ≥ 0.

The minimization of the spectral recovery problem
balances the trade-off between the approximation error
‖A−CÂ‖F and themconstraints. Details on the penalty
functions are given in Section 3.

2.2. A two-component model problem

Next a model problem with highly overlapping spec-
tra is introduced. In Sec. 4 spectral recovery methods
are applied to this (and further) problems.

For the two components we assume the following
spectra (the frequency coordinate is denoted byν; the
frequency range has arbitrarily been set toν ∈ [0, 500])

a1(ν) = 3 exp(−
(ν − 200)2

100
) +

3
2

exp(−
(ν − 250)2

100
)

+
3
2

exp(−
(ν − 150)2

100
),

a2(ν) = 2 exp(−
(ν − 50)2

30000
) + 1.3 exp(−

(ν − 200− γ)2

1000
),

with γ ∈ [0, 50]. The parameterγ controls the over-
lapping of the spectra and the hardness of the spectral
reconstruction problem. See Fig. 1 withγ = 20. The
correlation coefficient betweena1(ν) and a2(ν) on the
discrete gridν = 1, 2, . . . , 500 is shown in Fig. 2; for
γ = 0 the correlation takes its maximum being about
0.315.

We assume a chemical reaction which degrades the
first component and forms the second component. The
concentration profiles are assumed to be

c1(t) = 1− c2(t),

c2(t) =
exp(rt) − 1
10+ exp(rt)

,
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Figure 1: Absorbance spectraa1(ν), a2(ν).
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Figure 2: Correlation ofa1(ν) anda2(ν, γ) for γ ∈ [−50, 100].
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Figure 3: Concentration profiles of components 1 and 2.
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Figure 4: 2D/3D sequence of spectra.

with t ∈ [0, 100] andr = 0.1; see Fig. 3.
According to Lambert-Beer’s law the total absorption

of the system at timet and at the wavelengthν is

A(t, ν) = c1(t)a1(ν) + c2(t)a2(ν).

See Fig. 4 for a 2D/3D plot withγ = 20.
For a discrete time-frequency grid ofk by n nodes the

components of the absorbance matrixA ∈ R
k×n are

Ai j = c1(ti)a1(ν j) + c2(ti)a2(ν j) (3)

ti = t0 + iδt, i = 1, . . . , k,

ν j = ν0 + jδν, j = 1, . . . , n,

with δt, δν being the time/frequency grid-widths.

2.3. The singular value decomposition and abstract
factors

To solve the matrix factorization problem from Sec-
tion 2.1 we start with asingular value decomposition
[6] of A ∈ R

k×n. Without restriction of generality we
assume thatk ≤ n (the casek > n can be treated analo-
gously). The singular value decomposition ofA reads

A = ŪΣ̄V̄T

with orthogonal matrices̄U ∈ R
k×k, V̄ ∈ R

n×n and ak
by n diagonal matrix

Σ̄ =





σ1 0 0 . . . 0
. . .

...
...

0 σk 0 . . . 0





∈ R
k×n.

The diagonal elements are the non-negative singular
values withσ1 ≥ . . . ≥ σk. The number of non-zero
singular values is the rank ofA. Due to rounding er-
rors the rank ofA cannot be determined numerically in
a stable way. Numerically one considers theǫ-rank of
a matrix, denoted by rankǫ (A), being the number of sin-
gular values greater or equal toǫ.
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Figure 5: Abstract factors. Left: Concentration profiles. Right: Spec-
tra.

2.3.1. Solution of the factorization problem
Next a solution of the factorization problem 1 (Sec-

tion 2.1) is described. It is based on the singular value
decomposition and a proper transformation of the ma-
trix factors; for the underlying concepts of factor analy-
sis and several references see Chapter 3 in Malinowski
[5].

With s = rank(A) let ui ∈ R
k be the column vectors

of Ū = (u1, . . . , uk) and vi ∈ R
n the column vectors of

V̄ = (v1, . . . , vn). Further let

U := [u1, . . . , us] ∈ R
k×s, V := [v1, . . . , vs] ∈ R

n×s,

Σ := diag(σ1, . . . , σs).

ThenA = UΣVT is a low-rank representationof A and
C = UΣ andÂ = VT solves the factorization problem.

If rankǫ(A) = s, thenUΣVT is only a low-rank ap-
proximation. The error with respect to the spectral norm
is

f (C, Â) = ‖A− UΣVT‖2 = σs+1.

The errorσs+1 is the smallest possible error for any
C ∈ R

k×s and Â ∈ R
s×n. As noted in Sec. 2.1 these

abstract factors do not reconstruct the chemical data sat-
isfyingly. For the model problem from Section 2.2 with
γ = 20 the poor reconstruction is shown in Fig. 5. Both
the concentrations and the absorptivities have negative
components.

2.3.2. The spectral recovery problem
AssumingA to be formed by Lambert-Beer’s law (1),

i.e. A = CÂ, then a reconstruction ofC and Â can be
recovered only fromA by means of the singular value
decomposition. The key equation is

A = UΣVT = (UΣS)
︸ ︷︷ ︸

=C

(S−1VT )
︸   ︷︷   ︸

=Â

. (4)

where a matrix pairS, S−1 ∈ R
s×s is inserted. The exis-

tence of the matrixS can be shown as follows.

Lemma 2.1. Let A = CÂ and let A= UΣVT be the
low rank representation of A with s= rank(A). Then a
regular matrix S∈ R

s×s exists so that

C = UΣS, Â = S−1VT .

Proof. SinceA = CÂ andA = UΣVT the images of the
mappings

UΣ :Rs→ R
k; x 7→ UΣx, C : R

s→ R
k; y 7→ Cy

coincide and have the dimensions, sinceUΣ is of rank
s. Hence a regular matrixS ∈ R

s×s exists withC =
UΣS. This yields

0 = UΣVT −CÂ = UΣ(VT − SÂ).

FurtherUΣ ∈ R
k×s with s ≤ k has the maximal ranks

so that all columns ofVT − SÂ must be equal to zero.
ThusÂ = S−1VT .

3. Pure Component Decomposition Algorithm

Next we describe a newly developed software for
solving the spectral reconstruction problem (Section
2.1), calledPure Component Decomposition(PCD). In
Sec. 4 numerical results for PCD are compared with the
results which have been obtained by various software
packages being available (in part commercially). The
main characteristics of the PCD software (which makes
this code to some extent different from formerly exist-
ing codes) are as follows: 1. PCD computes the matrix
factors (the concentration and the absorptivity matrix)
simultaneously in order to determine a stable solution
with a well-balanced final residual. 2. Whenever possi-
ble (depending on the quality of the spectral data) PCD
aims to compute global (non-band-targeted) factoriza-
tions. 3. PCD uses various coupled minimization tools
(gradient iteration, quasi-Newton schemes and genetic
algorithms) to solve the constrained minimization prob-
lem. 4. A measure for the linear independence of the
computed spectra is taken as a penalty function for the
optimization.

To introduce the PCD algorithm we start from a gen-
eralization of (4). Instead of (S,S−1) a matrix pair
(T,T+) is used withT+ being the pseudo-inverse [6] of
T. This yields

A = UΣT+TVT

with T ∈ R
s×z ands ≤ z ≤ min{k, n}. ThenC = UΣT+

andÂ = TVT . This amounts to a reconstruction of the
concentration profiles byz left singular vectors.
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An even more general approach is to consider

A = UΣRTVT

with R ∈ R
z×s andT ∈ R

s×z. The components ofR and
T are taken as the degrees of freedom for the minimiza-
tion of the Lagrange function of the spectral recovery
problem underlying PCD

f (R,T) = ‖A− UΣR
︸︷︷︸

C

TVT
︸︷︷︸

Â

‖F +

p∑

i=1

γigi(C, Â).

Numerical minimization off is achieved by means of
the adaptive nonlinear least-squares algorithm NL2SOL
[7, 8]. The penalty conditions are activated stepwise in
the course of the minimization procedure and the posi-
tive weightsγi have been adapted to each problem class
(like UV-VIS, IR).

The penalty functionsgi are constructed to minimize
the following (unwanted) traits of the solution:

1. Negative components of̂A andC.
2. Non-smooth solutions (Tychonoff regularization

by the Euclidean norms of the first and second dis-
crete derivatives of̂A andC).

3. A large discrete integral of the spectra (columns of
Â).

4. The symmetric Kullback-Leibler divergence ofÂ,
see [10].

5. The Shannon entropy of̂A, see [11].
6. The inverse 1/σs(Â) of thesth singular value of̂A.

The constraint on the inverse of thesth singular value
σs(Â) is a measure for the linear independence of the
rows of Â. This constraint improves the separabil-
ity of mixture spectra with highly overlapping bands,
cf. Sec. 4.

Data preprocessing is an essential topic. Especially
for the case of FT-IR spectra, the subtraction of the
background yields distorted negative spectra. To handle
those spectra the algorithm is combined with a (poly-
nomial) baseline correction. Band targeting as used in
[12] is of minor importance in PCD; whenever possible
global decompositions are used in order to gain reliable
spectral factorizations.

4. Numerical results

Various software tools for spectral recovery have
been applied to the two-component model problem in-
troduced in Sec. 2.2. Numerical results are given for

γ PCD BTEM NMF/ANLS SPECFIT SPEXFA

0 ε1 8.3 · 10−6 3.7 · 10−6 5.0 · 10−1 4.3 · 10−7 2.4 · 10−15

ε2 3.4 · 10−4 2.9 · 10−2 6.6 · 10−4 3.3 · 10−4 3.3 · 10−4

10 ε1 1.0 · 10−5 3.5 · 10−6 7.0 · 10−1 4.0 · 10−7 2.3 · 10−15

ε2 3.1 · 10−4 8.0 · 10−3 1.0 · 10−3 3.3 · 10−4 3.3 · 10−4

20 ε1 2.0 · 10−5 2.8 · 10−6 8.7 · 10−1 4.3 · 10−7 1.6 · 10−15

ε2 4.8 · 10−4 1.2 · 10−2 4.0 · 10−4 3.4 · 10−4 3.4 · 10−4

30 ε1 6.1 · 10−6 3.6 · 10−6 7.3 · 10−1 3.4 · 10−7 1.3 · 10−15

ε2 5.1 · 10−4 6.6 · 10−3 4.2 · 10−4 3.3 · 10−4 3.3 · 10−4

40 ε1 6.3 · 10−6 3.7 · 10−6 6.0 · 10−1 3.0 · 10−7 2.4 · 10−15

ε2 5.1 · 10−4 1.7 · 10−3 4.0 · 10−4 3.3 · 10−4 3.3 · 10−4

50 ε1 6.8 · 10−6 4.7 · 10−6 5.3 · 10−1 3.2 · 10−7 2.0 · 10−15

ε2 1.0 · 10−2 3.1 · 10−2 4.0 · 10−4 3.3 · 10−4 3.3 · 10−4

Table 1: Reconstruction errors of the absorptivitiesÂ(METHOD)
i,: .

the Pure Component Decomposition(PCD) code pre-
sented in Sec. 3, for theBand Target Entropy Mini-
mization (BTEM) code of Garland et. al. [11, 13,
14, 15] using the implementation [12] and theNon-
negative matrix factorization/Alternating Nonnegativity
Constrained Least Squares(NMF/ANLS) algorithm of
Kim and Park [16]. Further computations are carried
out with the SPECFIT software [17, 18] and theSpec-
tral Isolation Factor Analysis(SPEXFA) Matlab Tool-
box for the chemical factor analysis by Malinowski
et. al. [5, 19].

We takek = 100 single spectra each withn = 501
frequencies ands = z = 2 for BTEM and PCD. SPEC-
FIT usesz = 2 ands = 3. (The parametersz and s
are described in Sec. 3). For each value ofγ the BTEM
code has been started twice to find the best possible re-
sults for the two components. This yields an accurate
absorbance spectrum of component 1 (the triplet sig-
nal). Forγ = 0, 10 the band targets were 195–205 (2nd
derivative constraint) for the first component and 195–
205 (integrated area and 2nd derivative constraints) for
the second component. Forγ ≥ 20 we substituted the
band targets for the first component by 48–54. No band
targets are required for PCD; a global decomposition is
possible.

The quality of the factorizations is measured by the
maximum norm [6] of the difference vector of the (nor-
malized) exact solutions from Sec. 2.2 and the (normal-
ized) computational results gained by the methods PCD,
BTEM, NMF/ANLS, SPECFIT and SPEXFA.

ε
(METHOD)
i =

∥
∥
∥Â(METHOD)

i,: − Â(orig.)
i,:

∥
∥
∥
∞
, i = 1, 2,

δ
(METHOD)
i =

∥
∥
∥C(METHOD)

i,: −C(orig.)
i,:

∥
∥
∥
∞
, i = 1, 2.

The indexi = 1, 2 denotes the two components of
the model problem. The reconstruction errors of the
pure component spectra are listed in Table 1. SPECFIT,
SPEXFA, BTEM and PCD show the best results. The
NMF/ANLS algorithm correctly finds a non-negative
factorization with a residual being in the range of the
machine precision. Hence the NMF/ANLS algorithm
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works successfully. Nevertheless, the found factors are
only coarse approximations of the original data.

An analogous result holds for the concentration pro-
files, see Table 2. SPECFIT and SPEXFA clearly profit
from the structure of the model problem, namely that
the first and the last spectrum of the spectra series are
very good approximations of the pure component spec-
tra. (The SPECFIT code uses theEvolving Factor Anal-
ysis (EFA), cf. [20].) To avoid such an unwanted ac-
cess to the pure component data we select a subset of 31
spectra (indexes 10, . . . , 40) from the original sequence
of k = 100 spectra, see Table 3. Then the PCD decom-
positions appear to provide the best approximations. A
nearly correct factorization succeeds even for the criti-
cal overlap parametersγ = 0 andγ = 50.

γ PCD NMF/ANLS SPECFIT SPEXFA

0 δ1 1.0 · 10−3 2.5 · 10−1 1.1 · 10−3 1.1 · 10−3

δ2 8.5 · 10−4 1.3 1.1 · 10−3 1.1 · 10−3

10 δ1 1.0 · 10−3 1.7 · 10−1 1.0822· 10−3 1.1 · 10−3

δ2 7.0 · 10−4 1.5 1.1 · 10−3 1.1 · 10−3

20 δ1 1.0 · 10−3 4.7 · 10−2 1.0 · 10−3 9.1 · 10−4

δ2 5.9 · 10−5 1.8 9.1 · 10−4 1.0 · 10−3

30 δ1 1.0 · 10−3 1.3 · 10−3 1.0 · 10−3 7.4 · 10−4

δ2 1.7 · 10−5 1.5 7.4 · 10−4 1.0 · 10−3

40 δ1 1.0 · 10−3 1.4 · 10−3 1.0 · 10−3 6.0 · 10−4

δ2 1.7 · 10−5 1.2 6.0 · 10−4 1.0 · 10−3

50 δ1 2.1 · 10−2 1.3 · 10−3 1.0 · 10−3 5.2 · 10−4

δ2 2.7 · 10−5 1.1 5.2 · 10−4 1.0 · 10−3

Table 2: Reconstruction errors of the concentration profilesC(METHOD)
i,: .

PCD NMF/ANLS SPECFIT SPEXFA
ε1 1.6 · 10−5 5.0 · 10−1 1.3 · 10−1 1.3 · 10−1

ε2 1.6 · 10−2 2.3 · 10−2 1.3 · 10−1 1.3 · 10−1

δ1 4.0 · 10−2 2.6 · 10−1 4.1 · 10−1 4.0 · 10−1

δ2 3.6 · 10−2 1.1 4.0 · 10−1 4.1 · 10−1

Table 3: Reconstruction errors for a interior subset of 31 spectra and
γ = 0.

4.1. Application to the Rhodium-catalyzed hydroformy-
lation

For the Rhodium-catalyzed hydroformylation the cat-
alyst formation is monitored by FT-IR spectroscopy.
Spectral recovery is used to get insight into the reac-
tive system. Eleven experiments with varying (tempera-
ture/concentrations) conditions were carried out result-
ing in a total number of 165 spectra each with 624 spec-
tral channels. This gives rise to a 165× 624 absorbance
matrix. By means of the PCD algorithm 6 independent
components have been recovered from the the mixture
spectra. This finding correlates with the largest singu-
lar values of the absorbance matrix; the first 10 singu-
lar values are 7.5890, 4.0335, 3.3468, 2.1408, 0.9938,

0.8716, 0.3753, 0.1833, 0.1293, 0.1000. The right sin-
gular vectors 1–5 and 17 (example of an oscillatory and
chemically not meaningful) are drawn in Fig. 6. The
component spectra are proper linear combinations of
these singular vectors. PCD withs = 6 has determined
the following component spectra, see Fig. 7. Very sim-
ilar results have been obtained by the BTEM code, see
Fig. 8. Slightly oscillatory or negative components can
be controlled by proper choice of the weighting factors
γi .
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Figure 6: Right singular vectors 1–5 and 17.

1800 1900 2000 2100

A

B

C

D

E

F

Wavenumber

Figure 7: Spectra of PCD recovered pure components A-F.

These 6 components have been identified to be:
A Cyclohexane (the solvent).
B Rh6(CO)16.
C Rh(acac)(CO)2.
D HRh(CO)3(I) , (I) see Fig. 9.
E HRh(CO)2(II), (II) see Fig. 9.
F Complex formed by each one molecule

of C and D.
We note that this problem shows overlapping bands

(C 2012.5cm−1, D 2013cm−1, E 2003.5cm−1, F
2011cm−1); For the components C, D and E these band
are correlated with further peaks in the range 2020–
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Figure 8: Spectra of BTEM recovered pure components A-F.

Figure 9: Left: Ligand I. Right: Ligand II.

2100cm−1 which supports the reliable work of spectral
recovery algorithms.

Next two of the underlying experiments are described
in more detail. The associated concentration pro-
files (disjoint participating components!) are shown in
Fig. 10.
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Figure 10: Left: 1st experiment. Right: 2nd experiment.

First experiment: (see Fig. 10 left) A solution of
0.0128 g C and 0.0903 g acylphosphite (II) in 48.877
g cyclohexane was prepared in a 100 ml Parr autoclave.
The molar surplus of the ligand relative to Rh is 2.79.
A hydridocarbonyl complex E is then formed at 303 K
and 10 bar synthesis gas pressure (CO:H2 = 1:1). The
formation of the active, modified hydridocarbonyl com-
plex is completed after 90 min. The spectra were taken
at an interval of 3 minutes. There is no formation of

Rh6(CO)16. The concentration of the solvent cyclohex-
ane is almost constant. Component D is not present in
this experiment.

Second experiment: (see Fig. 10 right) A solution
consisting of 0.0091 g Rh4(CO)12 in 42.7505 g cy-
clohexane was prepared in a 100 ml Parr autoclave.
Rh4(CO)12 is quantitatively converted to Rh6(CO)16 (B)
by heating the solution at 50 bar synthesis gas to 393 K.

A Rh-hydridocarbonyl complex D with one molecule
of monophosphite (I) is then prepared from the com-
ponent B at 393 K and 50 bar synthesis gas pressure
(CO:H2 = 1:1) by addition of 0.6286 g of component
(I) in 6.2435 g cyclohexane. The molar surplus of the
ligand relative to Rh is 21.1.

Spectra were recorded at a time interval of 30 sec-
onds. The formation of D is completed after 15 minutes.
E is not present in this experiment.

For the BTEM spectra the associated concentration
profiles can be computed by means of the least-squares
procedure; we observed in some part negative concen-
tration profiles. The SPEXFA tool has difficulties to
treat the negative absorption data (which were given af-
ter background subtraction); the found spectra are not
very well separated. The NMF/ANLS tool was not able
to find six independent components; negative absorp-
tion values cannot be treated.

5. Conclusion

The chemometric problem of pure component spec-
tral recovery has been presented as a constrained matrix
factorization problem. Without any a priori informa-
tion reliable estimates for the pure component spectra
and the associated concentration profiles can be com-
puted by means of the PCD software. The results were
compared with the powerful software packages BTEM,
NMF/ANLS, SPECFIT and SPEXFA. Especially for
overlapping spectra and in the case of truncated se-
quences of spectra the BTEM and the PCD algorithms
have proved as reliable algorithms and as valuable tools
for revealing reactants and unknown intermediates in
chemical reactions.
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