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Abstract

Structure elucidation for the reactive or catalytic species of a chemical reaction system can significantly be supported
by spectroscopic measurements. If the spectroscopic data contains isolated signals or groups of partially separated
peaks, then the identification of correlations between these peaks can help to determine the pure components by their
functional groups.

A computational method is presented which constructs from acertain frequency window, which contains a single
peak or a peak group, an associated pure component spectrum on the full frequency range. This global spectrum
reproduces the spectrum in the local frequency window or, atleast, reproduces the contribution from the dominant
component in the local window. The method is called the Peak Group Analysis (PGA). The methodological back-
ground of the PGA are a multivariate curve resolution methodand the solution of a minimization problem with
weighted soft constraints. The method is tested for two experimental FT-IR data sets from investigations into equilib-
ria of hydroformylation catalysts based on rhodium and iridium. An implementation of the PGA is presented as a part
of the FACPACK software.
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1. Introduction

Spectroscopic methods in combination with chemo-
metric techniques are key tools for the determination of
unknown chemical species in a reaction system. Here
we consider a situation in which the course of a chem-
ical reaction is recorded spectroscopically. If a series
of k spectra is taken and each spectrum is a vector ofn
absorbance values, then the spectral data can be stored
row-wise in ak-times-n matrix D. The Lambert-Beer
law in matrix formD = CA says thatD can be factored
in a product of two nonnegative matrices, namely in a
concentration factorC and a spectral factorA. In the
case of slightly perturbed, experimental data the aim is
to determine at least an approximate factorization. If
the reaction system contains a number ofs independent
components, thenC ∈ R

k×s contains columnwise the
concentration profiles in time of thespure components.
The spectral factorA ∈ Rs×n contains row-wise the pure
component spectra. Such a factorization ofD has first
been conducted for a two-component system by Lawton
and Sylvestre [1]. A fundamental problem of such fac-
torizations is that the matrix factors are not unique due
to the so-called rotational ambiguity [2, 3].

The four volumes of the book seriesComprehensive

Chemometrics[4] give a detailed overview on the wide
range of chemometric methods and its mathematical
analysis. Without claiming any completeness we would
like to mention the evolving factor analysis [5], the win-
dow factor analysis [6], which each can be combined
with Manne’s theorems [7], as well as the target factor
analysis [8] and, last but not least, the class of Multi-
variate Curve Resolution (MCR) methods with hard and
soft constraints [9, 10].

1.1. The idea underlying the peak group analysis

In the present paper our objective is a bit different.
We do not directly seek to compute a nonnegative fac-
torization D = CA, but we try to extract single spec-
tra and to identify related peak groups in order to de-
termine some of the species by their functional groups.
Our approach is driven by practical needs of the chemist
who has some presumptions and assumptions on the
species which might be found in the chemical reaction
system. For instance in organo-metallic/catalytic chem-
istry the (IR-)spectra of the reactants and the spectra
of the main reaction products are known, but the cat-
alytic active species and the catalyst preformation pro-
cess is sometimes unknown [11]. However, reasonable
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assumptions on the catalytic active species can be made.
Together with the molecular point group of the catalyst
or its precursor, the character table provides insight into
active and characteristic vibrations. Alternatively one
can compute reliable approximations of the absorption
spectrum by quantum mechanical SCF computations or
DFT calculations. For these reasons that the chemist,
after having identified a certain signal (like stretching
vibrations of terminal carbonyl ligands in rhodium car-
bonyl complexes), would like to know if this signal is
part of a pure component spectrum which also includes
a characteristic signal that is associated with a further
functional group [12, 13]. In this paper we present a nu-
merical algorithm, called Peak Group Analysis (PGA),
which aims at finding correlations between peaks and
peak groups which are associated with the same pure
component. Mathematically, the algorithm uses a spe-
cific target function which includes a weighted combi-
nation of soft constraints. The approach is based on a
local rank-one reconstruction; its application to spec-
troscopic data with narrow and partially isolated peaks,
which can typically be found in IR spectroscopic data,
works very well.

1.2. Overview

In Section 2 a short introduction to the basics of mul-
tivariate curve resolution techniques is given and the
idea of the PGA is explained. Section 3 presents the
mathematical foundation of the PGA and its target func-
tion. Further the soft constraint functions are intro-
duced. Some mathematical theorems on the construc-
tion of the concentration profiles are contained in Sec-
tion 4. Section 6 refers to the FACPACK implemen-
tation of the PGA [14, 15]. Finally, the application of
the PGA to experimental FT-IR data sets is discussed in
Section 8.

2. Peak group analysis (PGA)

2.1. Aim of the PGA

The aim of the PGA is to identify those peaks or peak
groups in a series of spectra taken from a chemical mix-
ture which can be assigned to the same pure compo-
nent. The starting point is the specification of a fre-
quency window which contains a certain peak or peak
group. Then the PGA intends to provide a pure com-
ponent spectrum which in the given frequency window
more or less reproduces the original signal. The PGA
can be applied repeatedly in order to find all pure com-
ponent spectra step-by-step.

2.2. The general MCR approach

The general approach to reconstruct the pure com-
ponent factorsC andA is based on the singular value
decomposition (SVD) ofD [1]. Let U ∈ Rk×k, Σ ∈ Rk×n

andV ∈ R
n×n be the factors of the SVD, so thatD =

UΣVT [16]. Furthermore lets be the number of inde-
pendent components underlying the dataD; for noise-
free data the numbers equals the rank ofD. ThenC
andA can be reconstructed only by using the firsts left-
and right singular vectors [6, 8].

In the case of noisy data it is often advantageous to
work with a number ofz ≥ s singular vectors for the
reconstruction ofC andA [10]. Then the mathematical
formulation reads

C = UΣT+, A = TVT (1)

with U, Σ and VT containing the firstz singular vec-
tors and singular values. The associated transformation
T ∈ R

s×z is a rectangular matrix. FurtherT+ ∈ R
z×s is

the so-called Moore-Penrose pseudoinverse ofT. This
SVD based reconstruction approach reduces the number
of degrees of freedom of the factorization problem tosz
which is the number of matrix elements ofT. Finally,
the determination of feasible and chemically meaning-
ful matrix factorsC andA amounts to the computation
of a proper matrixT ∈ Rs×z.

2.3. Construction of a single pure component spectrum

Equation (1) is a construction for the simultaneous
formation of the spectra and concentration profiles for
all factors. In contrast to this the PGA determines the
pure component spectra, which are the rows ofA, step-
by-step. Mathematically a pure component spectrum
a ∈ R

1×n is a linear combination of thez right singu-
lar vectors which belong to thez largest singular vec-
tors. The spectra are written as row vectors so thata
has the forma = t V(:, 1 : z)T . Our task is to de-
termine the vectort ∈ R

1×z of expansion coefficients.
Thesez degrees of freedom can be reduced toz − 1
since any nonzero scaling of the spectrum is without
relevance. The Perron-Frobenius theory on the spec-
trum of a nonnegative matrix [17] provides under mild
assumptions on the spectral data matrixD, see Theo-
rem 2.2 in [15], that the first coefficientt1 is never equal
to zero. The mathematical argumentation is as follows:
the Perron-Frobenius theory guarantees thatV(:, 1) is a
sign-constant vector. Without loss of generality it can be
assumed as a component-wise nonnegative vector. Or-
thogonality of this vector to any linear combination of
the remaining singular vectorsV(:, 2), . . . ,V(:, n) proves
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that this linear combination must have positiveandneg-
ative components. Since a feasible spectrum must have
only nonnegative components, any feasible spectrum
must have a contribution fromV(:, 1).

All this justifies to use a scaling so thatt1 = 1, which
for instance has been used in [18, 19, 14] and for the re-
solving factor analysis (RFA) [8]. Thust can be written
in the form t = t1(1,w) with w ∈ R

1×z−1 and t1 > 0.
Thus we geta = t1(1, w)VT .

2.4. Window selection and normalization

The starting point of the PGA is the selection
of a channel window [νℓ, νr ] along the wavenum-
ber/frequency axis. This window should contain a sin-
gle peak or group of peaks whose affiliation to other
peaks or peak groups of the same pure component
within the series of spectra is to be analyzed. The
channel window [νℓ, νr ] contains the discrete wavenum-
ber valuesνi with respect to the given grid. The set
I ⊂ {1, . . . , n} is the maximal set of indices so that

νℓ ≤ νi ≤ νr , for all i ∈ I .

For the following construction of a pure component
spectruma, which reproduces more or less the selected
signal in the window [νℓ, νr ], it is useful to normalize
a ∈ Rn in I in a way that

max
i∈I

ai = 1. (2)

Together with the non-normalized representationa =
t1(1,w)VT andai = t1(1,w)V(i, :)T we prefer to work in
the following with the normalized form

a = a[w] :=
(1,w) VT

maxi∈I ((1,w) V(i, :)T)
. (3)

2.5. Stepwise extraction of the pure component spectra

The PGA can be applied repeatedly to a given series
of spectra. In each cycle the spectrum of a single com-
ponent can be extracted. The method works very well
especially for IR spectroscopic data with its typically
narrow and isolated peaks, see Section 8. If for a cer-
tain component the spectruma (row vector) has been
extracted and if for this component the concentration
profile c (column vector) is accessible, then the contri-
bution of this component to the spectral data matrixD
can be removed by subtracting a proper multiple of the
rank-1-matrixca∈ Rk×n from D. The principles of such
a rank-1-downdate of a nonnegative matrix in order to
construct in the end a complete nonnegative matrix fac-
torization has been analyzed in [20]. In every step the

contribution of one component is removed fromD and
finally and ideally only the noise remains. The expla-
nation is simple, but in practice such an approach has
severe disadvantages due to the influence of noise. The
decisive point is that such a stepwise rank-1-downdate
of D is very sensible with respect to noise, since the
errors of all previous rank-1-downdates accumulate in
D. For instance the subtraction of a rank-1-matrix may
result in small negative components inD or the subtrac-
tion of a certain peak of a slightly perturbed amplitude
or frequency position could result in a small remain-
ing peak with a somewhat shifted frequency position.
All this adversely affects the accuracy of the subsequent
rank-1-downdates.

Alternatively one can always work with the original
spectral data matrixD without subtracting rank-1 ma-
trices [21]. This reduces the impact of noise. If finally
a series ofs independent pure component spectra has
been determined, then the associated concentration fac-
tor C can be computed by a “global” least-squares com-
putation. Such a procedure appears to be more stable.

2.6. Application to IR data

By construction the PGA can be applied to spectral
data which contains several narrow peaks and which
also includes, at least for some time intervals, frequency
ranges in which no absorption is observed. If, contrary
to the foregoing, all pure component spectra show an
absorption on the whole frequency range, then it would
be difficult for the PGA to extract the contribution from
a single component.

In particular the IR or Raman spectroscopy provide
data with narrow peaks and several non-absorbing fre-
quency ranges. Then a step-by-step extraction approach
could successfully be applied; this has clearly been
demonstrated by the BTEM software by Garland and
his group [21]. A further technique which is based on a
local analysis is SIMPLISMA [22, 23] which has been
successfully applied to IR spectral data. In contrast to
this the UV/Vis spectroscopy results in spectra which
are rather unsuitable for an application of the PGA. Fi-
nally, the PGA can principally be applied to NMR data
[24]; however the occurrence of the nuclear magnetic
resonance chemical shifts necessitates a proper data pre-
processing.

2.7. Relations to EFA, WFA and TFA techniques

The evolving factor analysis (EFA) [5] and the win-
dow factor analysis (WFA) [6] are powerful techniques
for the analysis of spectroscopic data. EFA analyzes
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the evolution of the rank of a series of growing sub-
matrices ofD. WFA computes the concentration pro-
file of a certain component by using submatrices along
the time axis for an evolutionary process; together with
Manne’s theorem pure component information can be
extracted. There are some similarities between the WFA
and the PGA, but there are also two differences. First,
PGA uses windows along the frequency axis. Second,
WFA and EFA are rather fixed computational proce-
dures, whereas the PGA is based on an optimization
process with a target function which includes several
regularization terms, see Section 3.

Finally, the PGA is very different from the target fac-
tor analysis (TFA) [8] where a given factor (spectrum)
is tested, whether it contributes to the spectral measure-
ment or not. For the PGA no spectrum has to be known
initially.

3. The target function for the PGA

Equation (3) shows the way how to compute a single
pure component spectruma by means of a row vector
w ∈ R

z−1. Next w is determined by the solution of a
minimization problem for a target function which in-
cludes several weighted constraints. The choice of the
constraint functions and their weight factors is a crucial
step. Their suitable selection depends on the type of the
spectroscopic data. The solution of constrained mini-
mization problems for the computation of nonnegative
matrix factorizations is a standard procedure in chemo-
metrics, see e.g. [25, 26, 27, 21, 9, 2, 28, 10].

The PGA target functionf is formed by a weighted
mean of two functionsf1 and f2 which is combined with
several weighted soft constraints

f (w) = ω1 f1(a[w]) + ω2 f2(a[w]) +
q∑

i=1

γ2
i gi(a[w]) (4)

with a[w] by (3); in the following we simply writea for
a[w]. Thereinωi ≥ 0 andγi ≥ 0 are the weight factors.
The functionsf1 and f2 are:

1. Norm of the spectrum:

f1 =
n∑

j=1

a2
j .

A spectrum with a small integral and narrow peaks
is favored.

2. Norm of the discrete second derivative of the spec-
trum:

f2 =
n−1∑

j=2

(
a j−1 − 2a j + a j+1

(∆ν)2

)2

with ∆ν being the wavenumber increment along
the equidistant wavenumber grid. The functionf2
is the sum of squares of the discrete second deriva-
tive of the spectruma with respect to equidistant
grid of wavenumber values. Byf2 a smooth spec-
trum is favored.

The constraint functions are introduced in Section 3.1.

3.1. Constraint functions

The construction of the soft constraints, also called
regularization functions, and their weighting is deci-
sive for the computation of meaningful pure component
spectra. In order to construct a flexible curve resolu-
tion method, which can be applied to several series of
spectra from different types of spectroscopic techniques
with their different typical shapes, it is useful to have a
stock of various regularization functions, see [21, 9, 10]
for diverse examples.

For the PGA the following soft constraints are avail-
able (and can or cannot be used depending on the
present conditions that, e.g., certain spectra are known
or are not known):

- Nonnegativity.
- Local reconstruction error,
- Distance (by the sum of squares) to a given pure

component spectrum. This constraint is similar to
the target factor analysis [8],

- Correlation with other pure component spectra.
All these constraint functions have been written in a
functional form depending ona. By (3) a depends on
w so that these functions essentially depend on thez− 1
components ofw.

Within each step of the optimization the current ap-
proximation of a spectruma can be used in order to
compute a temporary concentration profilec with re-
spect to the channel windowI according to

c = UΣυ∗ with υ∗ =
V(I , :)T a(I )T

‖a(I )‖22
. (5)

The resulting paira andc allows an optimal reconstruc-
tion of D in the channel windowI ; see Section 4 for the
mathematical analysis. It is important to note thatc and
a are only temporary approximations which are changed
within each step of the optimization procedure. A fur-
ther important point is thata ≥ 0 andD ≥ 0 imply that
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c ≥ 0; a proof of this fact is given in Corollary 4.2. The
result thatc ≥ 0 shows that no further constraint func-
tion has to be added tof in order to guarantee the non-
negativity ofc. At the end of the iterative minimization,
Equation (5) can also be used to compute from the final
spectruma a final approximation of the concentration
profilec.

The constraint functionsgi : R
n → R+ read as fol-

lows:

1. Nonnegativity: The constraint function which is
used to favor an almost nonnegative solutiona is

g1 =

n∑

j=1

min

(
a j

‖a‖∞
+ ε, 0

)2

.

Therein‖ · ‖∞ denotes the maximum norm which
is maximum of the absolute values of the com-
ponents. A small valueε ≥ 0 is used to al-
low slightly negative components for which the ra-
tio mina j/‖a‖∞ is larger than−ε; accepting such
small negative entries can be very helpful for find-
ing a solution in the case of noisy data. In Corol-
lary 4.2 it is shown that the associated concentra-
tion profile c is nonnegative, ifa and D are non-
negative. Hence a constraint function on the non-
negativity ofc is not needed.

2. Local reconstruction: Withυ∗ by (5) andc = UΣυ∗

the local reconstruction error is

g2 =

∥∥∥∥∥∥Σ
V(I , :)T − V(I , :)T a(I )Ta(I )

‖a(I )‖22


∥∥∥∥∥∥

2

F

.

Thereina(I ) andV(I , :) are the vector resp. matrix
which are reduced to the indices contained in the
index setI . Further‖ · ‖F is the Frobenius norm,
which is the square root of the sum of squares of
its argument.

3. Distance to a given spectrum ˆa ∈ R
1×n: This con-

straint function measures the distance of the opti-
mally scaled ˆa to a

g3 =

n∑

j=1

(αâ j − a j)2 with α =
âaT

‖â‖22

= ‖a‖2 −
âaT

‖â‖2
.

4. Correlation with other spectra: This constraint
function favors a solution with a small correla-
tion with other pure component spectraA(i, :), i =

1, . . . , s0,

g4 =

s0∑

i=1

n∑

j=1

(A(i, j) a j)
2.

3.2. Numerical solution of the minimization problem

The target functionf in (4) defines a nonlinear least
squares problem withz− 1 free variables. In our FAC-
PACK implementation of the PGA, see Section 6 we
use a combination of genetic algorithm and of the ACM
software NL2SOL [29] written in FORTRAN.

A careful choice of the weight parameters, especially
the choice ofω1 andω2, is very important for comput-
ing reliable and meaningful spectra. If a channel win-
dow is selected which contains peaks originating from
more than one component, then the local reconstruction
cannot be successful andγ2 should be relatively small.

4. Concentration profiles by local reconstruction

A well-known approach to construct the concentra-
tion profilec which fits bests to a certain pure compo-
nent spectruma is to compute

c = Da+

with the pseudo-inversea+ of a, see e.g. Equation (5) of
[21]. With the representationa = tVT of a it holds that

c = Da+ = UΣVTVt+ = UΣt+.

The pseudo-inverse oft reads

t+ =
tT

‖t‖22
=

VTaT

‖aV‖22
=

VTaT

‖a‖22

so that

c = UΣυ with υ =
VT aT

‖a‖22
. (6)

This representation ofc is similar to the “windowed”
representation by Equation (5) which has the form

c = UΣυ∗ with υ∗ =
V(I , :)T a(I )T

‖a(I )‖22
. (7)

In this section a proof is given that the windowed rep-
resentation (7) is a suitable generalization of (6) which
has optimal reconstruction properties with respect to the
channel windowI .

The central ideas for the reconstruction ofc are as
follows: A single spectruma ∈ R

1×n should be asso-
ciated with a single concentration profilec ∈ R

k×1 so
5



that the rank-1 matrixca is a best approximation of the
spectral dataD within the channel window which is de-
termined by the index setI . The restrictionD|I of D to
the channel windowI is given by

D
∣∣∣
I
= UΣV(I , :)T

and the rank-1 matrixca with a = tVT reads

ca= UΣυ︸︷︷︸
c

tVT
︸︷︷︸

a

.

The restriction ofca to the channel windowI is

ca
∣∣∣
I
= UΣυ tV(I , :)T .

Under the assumption that the spectral signal in the
channel windowI is determined only by a single com-
ponent, the difference function

f (υ) =
∥∥∥D

∣∣∣
I
− ca

∣∣∣
I

∥∥∥2

F
=

∥∥∥UΣV(I , :)T − UΣυ tV(I , :)T
∥∥∥2

F

is to be minimized.
In Theorem 4.1 and in Corollary 4.2 a minimizerυ∗

is determined. It is shown that the concentration profile
c = UΣυ∗ is nonnegative ifa and D(:, I ) are nonneg-
ative. Finally, Lemma 4.3 presents an error estimation
for C(:, i) − c.

Theorem 4.1. Let D ∈ Rk×n with rank(D) ≥ z be given
and let U∈ Rk×z, Σ ∈ Rz×z and V∈ Rn×z be the factors
of a truncated singular value decomposition of D. Fur-
thermore let I⊂ {1, . . . , n} be the index set of the chan-
nel window. The vector t∈ R

1×z determines a nonzero
spectrum a= tVT and it is assumed that the restriction
of a to I, which is denoted by a

∣∣∣
I
=: a(I ) does not vanish,

i.e. ‖a(I )‖ > 0.
Then the local reconstruction error

f (υ) =
∥∥∥UΣV(I , :)T − UΣυtV(I , :)T

∥∥∥2

F
(8)

attains its minimum inυ∗ ∈ R1×z with

υ∗ =
V(I , :)T V(I , :) tT

‖V(I , :) tT‖22
=

V(I , :)T a(I )T

‖a(I )‖22
. (9)

With the associated optimal concentration profile c=
UΣυ∗ the rank-1 reconstruction ca results in a rank-1
downgrade of D

rank(D − ca) = rank(D) − 1. (10)

Proof. Due to the orthogonal invariance of the
Frobenius-norm [16] the distancef (υ) can be simplified

f (υ) =
∥∥∥ΣV(I , :)T − ΣυtV(I , :)T

∥∥∥2

F

=

z∑

j=1

∑

i∈I

σ2
j V

2
i j − 2

z∑

j=1

σ2
jυ j

∑

i∈I

Vi j

z∑

l=1

tlVil

+

z∑

j=1

σ2
jυ

2
j

∑

i∈I


z∑

l=1

tlVil


2

.

The gradient vector has the form

∇ f (υ) = 0− 2Σ2V(I , :)TV(I , :) tT + 2‖V(I , :) tT‖22Σ
2υ

and∇ f (υ∗) = 0 as a necessary condition for an ex-
tremum results in (7). The Hessian off (υ) reads

H f (υ) = 2‖V(I , :) tT‖2 Σ
2 = 2‖a(I )‖2Σ2.

Since rank(D) ≥ z the truncated matrixΣ has the max-
imal rank and together with‖a(I )‖ > 0 the Hessian
H f (υ∗) is a positive definite matrix. Hencef attains its
minimum inυ∗.

In order to prove (10) we need the following relation
for then× n identity matrixI and column vectorsa, b ∈
R

n: The matrixI −abT is regular if and only ifaTb , 1.
This relation follows from the more general Sherman-
Morrison-Woodbury formula [16]. For the given special
case the proof is simple. IfI − abT is regular, then (I −
abT)a = a − a(bTa) , 0 only if bTa , 1. To prove
the other direction one has to check that the inverse of
I − abT is (I + abT/(1− ba)).

For t andυ∗ it holds that

tυ∗ =
t V(I , :)T V(I , :) tT

‖V(I , :) tT‖22
= 1

so that

D − ca= D − UΣυ∗tVT = UΣ(I − υ∗t)VT .

SinceI − υ∗t is a singular matrix with the rankz− 1 the
same holds forD − ca.

The concentration profilec by Theorem 4.1 is non-
negative ifD anda are nonnegative. This is proved next.

Corollary 4.2. Let the assumptions of Theorem 4.1 be
satisfied and let D(:, I ) ≥ 0 as well as a= tVT ≥ 0.

Then the associated concentration c= UΣυ∗ is also
nonnegative.
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Proof. SinceD(:, I ) ≥ 0 anda(I ) ≥ 0, it holds that

c = UΣυ∗ = UΣ
VT(I , :) a(I )

‖a(I )‖22
=

D(:, I ) a(I )T

‖a(I )‖22
≥ 0.

(11)

The factorsa andc arise by construction from a local
factorization within the channel windowI . If D = CA is
the correct global factorization ofD, thena andc should
be (aside from scaling) recoverable as a certain row of
A and as the associated column ofC so thata = A(i, :)
andc = C(:, i) for a suitable indexi.

The difference betweenc (by the local construction)
and the associated columnC(:, i) (as determined by the
global factorization) depends on the computeda and on
the absorption by the other species in the windowI . An
error-estimation forc− C(:, i) is given in the following
lemma.

Lemma 4.3. Let the assumptions of Theorem 4.1 be sat-
isfied, let m be the number of channel indices in I and
let a(I ) = tV(I , :)T and c as given in (7). Further let
D = CA be a feasible nonnegative factorization so that
a equals A(1, :) on the interval I, which is a(I ) = A(1, I ).
Finally let

E =
s∑

i=2

C(:, i)A(i, I )

be the sum of all absorptions by all other components in
the channel window I.

Then the error‖c − C(:, 1)‖2 is bounded from above
as

‖c−C(:, 1)‖2 ≤
‖E‖2
‖A(1, :)‖2

.

Therein‖E‖2 = maxa,0 ‖Ea‖2/‖a‖2 is the spectral oper-
ator norm.

Proof. With c = D(:, I ) a(I )T/‖a(I )‖22 by (11) anda(I ) =
A(1 :, I ) it holds that

c =


s∑

i=1

C(:, i) A(i, I )


a(I )T

‖a(I )‖22

= C(:, 1)+ E
a(I )T

‖a(I )‖22
.

With respect to the Euclidean norm and the associated
spectral norm one gets

‖c−C(:, 1)‖2 =
‖E a(I )T‖2

‖a(I )‖22
≤
‖E‖2
‖a(I )‖2

. (12)

A useful consequence of (12) is the following: If
the inner products ofa with all other pure component
spectra within the windowI are equal to zero, then
c = C(:, 1) and the pure component concentration pro-
file is reproduced exactly.

In Remark 4.4 an estimate for the errorc − C(:, 1)
for the case thatc is constructed by the non-windowed
pseudo-inverse oft in the formc = UΣt+. According to
our experience the windowed reconstruction ofc by 4.1
provides the better results for the concentration profiles
compared to the construction with the pseudo-inverse of
t. The different approaches are compared in Section 8.2
for experimental data.

Remark 4.4. Let the assumptions of Lemma 4.3 be sat-
isfied. If the concentration profile c is computed by
c = UΣt+ with the pseudo-inverse t+ of t and A(1, :) =
a = tVT , then the error vector c−C(:, 1) reads

c−C(:, 1) =
1

‖A(1, :)‖22

s∑

i=2

C(:, i)A(i, :)A(1, :)T. (13)

Its Euclidean norm is bounded from below and above in
the form

α ≤ ‖c−C(:, 1)‖2 ≤ β

with

α =
maxi=2,...,s ‖C(:, i)‖2A(i, :)A(1, :)T

‖A(1, :)‖2
, (14)

β =

∑s
i=2 ‖C(:, i)‖2A(i, :)A(1, :)T

‖A(1, :)‖2
. (15)

Proof. With a = A(1, :) = tVT anda+ = (tVT )T/‖tVT‖22
it holds that

c = UΣt+ = UΣtT/‖t‖22 = UΣVTVtT/‖tVT‖22

= D(tVT )+ = Da+ = DA(1, :)+

=


s∑

i=1

C(:, i)A(i, :)

 A(1, :)+

= C(:, 1)+


s∑

i=2

C(:, i)A(i, :)

 A(1, :)+.

This together withA(1, :)+ = A(1, :)T/‖A(1, :)‖22 results
in (13). The bounds (14) and (15) can easily be proved.

The difference (13) vanishes if and only ifA(i, :)A(1, :
)T = 0 for all spectrai = 2, . . . , s. This condition is
more restrictive compared to (12) where only a local
condition with respect to the channel windowI has to
hold. Thus the error forc − C(:, 1) is expected to be
larger compared to the estimate from Lemma 4.3.
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5. Delimitation to alternative MCR methods

The PGA method is one among many alternative and
well-established MCR methods. Explicitly we would
like to mention the famous MCR-ALS toolbox [9], the
resolving factor analysis (RFA) [30], the SIMPLISMA
algorithm [22], the band target entropy minimization
(BTEM) [21] and the pure component decomposition
(PCD) [10].

All these methods focus on the computation of a sin-
gle nonnegative factorizationD = CA. However, due
to the rotational ambiguity there are nearly always con-
tinua of nonnegative factorizations which can be com-
puted by global MCR-methods and which can be rep-
resented by the so-calledArea of Feasible Solutions
(AFS). Computationally the AFS can be determined,
e.g., by the FACPACK software [31, 32]. The strategy
of the first-mentioned MCR methods is to filter out only
a single factorization by means of soft constraints. A
reliable MCR method should provide a good approxi-
mation of the chemically correct solution. The general
approach of all these MCR-methods is to construct a
cost function which depends on the transformation ma-
trix T, see (1), and whose feasible matrix elements are
associated with the AFS. However, the minimization of
the soft-constrained cost function results in the desired
matrix factorsC and A. With this approach the com-
puted solution strongly depends on the choice of the
constraints. The numerical computation of the global
minimum of the cost function is sometimes a difficult
numerical problem as the numerical minimization may
get stuck a local minimum.

5.1. Benefits of the PGA algorithm

A characteristic trait of the PGA algorithm is that
the pure component spectra are computed step-by-step,
whereas other methods like RFA or PCD compute all
spectra (and concentration profiles) simultaneously. Ac-
cording to our experience, PGA is a robust algorithm for
medium-to-strong perturbed spectral data. The method
also works very well in case of systematic perturba-
tions for example from a suboptimal baseline correc-
tion. Whenever MCR methods like RFA, MCR-ALS or
PCD show difficulties in the simultaneous computation
of the spectra and concentration profiles, the PGA algo-
rithm can be applied in order to try a stepwise decompo-
sition. Then PGA may extract single pure components
and can be able to uncover correlations within highly
overlapping peak groups. The technical reason for these
abilities are the window analysis of the spectra and the
reduced number of variables of the cost function.

The strategy underlying the PGA method shows some
resemblance to the BTEM algorithm [21]. BTEM also
allows a step-by-step extraction of the pure compo-
nent spectra. However, the computational procedures
of PGA and BTEM are different. Compared to BTEM
the number of unknown variables is reduced fromz to
z − 1. Further, PGA works with a different construc-
tion of the associated concentration profile by using a
windowed pseudo-inverse construction. In BTEM the
pseudo-inverse is used for a global fit, whereas for PGA
the potentially more stable local approximation from (5)
is applied. See Lemma 4.3 and Remark 4.4.

5.2. Limitations of a step-by-step factorization

The higher robustness of PGA with respect to noise
by means of a windowed step-by-step decomposition
has to be paid with a partial loss of insight to the
global correlations between the factors. In other words,
step-by-step computed concentration profiles and spec-
tra must not necessarily result in factorsC andA with a
small reconstruction errorD − CA. Whenever the data
does not include systematic perturbations or a consider-
able portion of noise one should first apply MCR meth-
ods like RFA, MCR-ALS or PCD.

6. PGA and the FACPACK software

The FACPACK software is a program package for the
computation of multi-component factorizations and the
area of feasible solutions for two- and three-component
systems by means of the polygon inflation method
[14, 15]. This software also allows the simultaneous
representation ofC andA and a step-by-step construc-
tion of the pure component factors by using arguments
from the complementarity theory [31].

The peak group analysis (PGA) is a separate module
of the forthcoming revision 1.2 of FACPACK, which is
planned to be published in the second half of the year
2015. The current revision of the software can be down-
loaded from the web page

http://www.math.uni-rostock.de/facpack/

7. Analysis of a model problem

Next the PGA method is applied to a three-
component model problem with a number ofk = 201
spectra each withn = 501 channels. The simulated
concentration profiles, the columns ofC, and the pure
component spectra, the rows ofA, are shown in Figure

8
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Figure 1: The concentration profiles, the columns ofC, are shown
together with the pure component spectra, the rows ofA, for the model
problem from Section 7. In a second step noise is added to the product
D = CA.
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Figure 2: Window selection in the series of spectra with normal dis-
tributed noise. Left: Three windows positioned on the well-separated
peaks, Right: Three windows positioned on the three strongly over-
lapping peaks.

1. The spectral data matrix isD = CA. Noise of dif-
ferent types, namely random noise and systematic noise
or bias, are added to the data in order to demonstrate
the capabilities of the PGA method. The perturbed data
sets are shown in Figure 2 (case of random noise) and
in the left subplot of Figure 5 (systematic noise). More
information is given below.

7.1. Overlapping peaks

The pure component spectra are constructed in a way
that each spectrum contains three peaks and each peak
is a Gaussian. One peak for each spectrum is relatively
isolated; these peaks are centered atx0 = 25, x0 = 30
andx0 = 35. A second peak of each spectrum strongly
overlaps with one peak of the other pure component
spectra; the three peaks are centered atx0 = 50, x0 = 53
and x0 = 56. A third peak of each spectrum is cen-
tered atx0 = 80 and has the amplitude 1. Thus this
peak completely overlaps with the other spectra. How-
ever, the three peak widths are slightly different. See the
right subplot of Figure 1 for these three spectra.

7.2. PGA applied to windows on well-separated peaks

First PGA is applied to the data matrixD plus ran-
dom noise (normal distributed noise with a standard
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Figure 3: PGA results on the pure component spectra for data includ-
ing random normal distributed noise. Left: Recovered pure compo-
nent spectra for the case of isolated peaks, see left subplotin Figure
2. Right: Recovered pure component spectra for the case of strongly
overlapping peaks, see right subplot in Figure 2. The original pure
component spectra are plotted in black lines.

deviation of 0.002 and mean 0). As the model prob-
lem includes three independent components, three sep-
arate windows are selected for the calculation of the
three pure component spectra. First, small windows are
placed at the three isolated peaks atx0 = 25, x0 = 30
andx0 = 35. These three narrow windows in gray color
are shown in the left subplot of Figure 2. These win-
dows are the basis for the identification of the associated
pure component spectra.

The weights factorsωi andγi , see Equation (4), are
set toω1 = 0.1, γ1 = 10,γ2 = 1.5 andω2 = γ3 = γ4 =

0. The reconstruction is based on a number ofz = 3
singular vectors. The computed pure component spectra
are shown in Figure 3. The relative reconstruction error

ei =
‖A(orig)(i, :) − a(PGA)(i, :)‖2

‖A(orig)(i, :)‖2
, i = 1, 2, 3, (16)

allows to compare the results with the original solutions.
We gete= (4.7 ·10−3, 1.5 ·10−2, 1.1 ·10−2). Thus PGA
works very well.

7.3. PGA for strongly overlapping peaks

Next we demonstrate the capability of the PGA to
identify peak correlations and peak groups for the case
of overlapping peaks. Therefore the three windows are
placed around the three centersx0 = 50, x0 = 53 and
x0 = 56 which belong to strongly overlapping peaks.
Once again the three pure component spectra are recon-
structed from the noisy data, see Section 7.2 on the noise
intensity. The window selection is plotted by gray bars
in the right subplot of Figure 2.

For the PGA we used the weight factorsω1 = 0.1,
γ1 = 10,γ2 = 0.5 andω2 = γ3 = γ4 = 0. The number
of singular vectors isz= 3. The solutions are presented
in the right subplot of Figure 3. Even for these strongly
overlapping signals PGA works very well and the cor-
rect single pure component spectra have been identified
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Figure 4: The singular values of the data matrixD including system-
atic noise (×) and the singular values of the non-perturbed data (◦).
The non relatively large singular valuesσ4, σ5, σ6 are a clear indica-
tor of the presence of systematic noise (bias).

with errors less than one percent. The error vector (16)
readse= (3.7 · 10−3, 7.9 · 10−3, 6.8 · 10−3).

7.4. PGA and systematic noise

Next PGA is applied to the data including systematic
noise. ThereforeD is computed as

Di, j =

3∑

ℓ=1

Ci,ℓAℓ, j + 0.005

2−
(x j − 50− i

10)2

500

 (17)

for i = 1, . . . , 201 and j = 1, . . . , 501. The series of
spectra including these perturbations is shown in the left
subplot of Figure 5. The first eight singular values of
the data matrixD are shown in Figure 4. Due to the
perturbation, see (17), the singular valuesσ4,σ5 andσ6

are very different from the non-perturbed data. For non-
perturbed data the matrix has the rank 3. Hence these
singular values are equal to zero aside from rounding
errors.

For the PGA computation the windows are located
on the strongly overlapping peaks. A number ofz =
4 singular vectors is used. The selected windows and
the computed pure component spectra are presented in
Figure 5.

Even in presence of systematic noise (bias) and for
the strongly overlapping peaks it is possible to identify
the correct pure component spectra with the PGA. The
error vector readse= (2.8 · 10−2, 3.7 · 10−2, 5.1 · 10−2).

8. Application to IR data from experimental stud-
ies of equilibria of rhodium and iridium hydro-
formylation catalysts

In this section the PGA is applied to FT-IR spec-
troscopic data on the formation of rhodium-carbonyl
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Figure 5: Left: The three PGA windows positioned on the strongly
overlapping peaks. Right: The PGA results of the pure component
spectra. Even in presence of systematic noise PGA can correctly iden-
tify the pure component spectra.

clusters and on the catalyst formation for the iridium-
catalyzed hydroformylation; see [33, 10, 12] for exper-
imental details. Further an application of the PGA to
weak signals is presented in Section 8.4. In this section
the frequency axis for all spectra is given in wavenum-
bers.

8.1. Rhodium-carbonyl complex formation from
Rh(acac)(CO)2

The displacement of the organic ligand acetylaceto-
nate in Rh(acac)(CO)2 by CO is an unwanted side reac-
tion in the formation of a catalytically active rhodium-
hydridocarbonyl complex. In this experiment at 303 K
and 20 bar synthesis gas pressure (CO:H2 = 1:1) the ini-
tial concentration of Rh(acac)(CO)2 is 6.6·10−4molL−1

in the solvent cyclohexane. Under these conditions the
”unwanted” rhodium carbonyl clusters Rh4(CO)12 and
Rh6(CO)16 together with Rh(acac)(CO)2 are the domi-
nating absorbing components. The spectrum of the sol-
vent cyclohexane has been subtracted from the FT-IR
spectroscopic data. A number ofk = 292 spectra has
been taken; each spectrum hasn = 1479 channels. A
subset of the series of spectra is shown in Figure 6.

In order to compute the pure component spectra
of this system withs = 3 dominating components
we have selected three separate channel windows for
the application of the PGA. Each of these three win-
dows [2005.5, 2020.1]cm−1, [1875.1, 1893.9]cm−1 and
[1812.7, 1823.4] cm−1 contains only a single peak. The
PGA has been applied three times withz = 4 and the
weightsω1 = 0.15 (first run to determine the first com-
ponent),ω1 = 0.3 (second run to determine the sec-
ond component) andω1 = 0.15 (third run for the third
component). Furtherω2 = 0 in all program runs. In
all these casef1 and f2 according to Equation (4) have
been used. Further, only the constraint functiong1 and
g2 have been used with the weight factorsγ1 = 10 and
γ2 = 1. This parameter selection has been used for all
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Figure 6: A subset of thek = 292 spectra for the formation of
rhodium-carbonyl complexes from Rh(acac)(CO)2.
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components by a global least-squares fit.

three PGA computations. The results, namely the pure
component spectra of Rh(acac)(CO)2, Rh4(CO)12 and
Rh6(CO)16 are shown in Figure 7.

The concentration profiles of these three components
can be computed by the techniques introduced in Sec-
tion 4; the use of Equation (9) is recommended. How-
ever, in the present situation the three spectra of the
three-component system are known. Hence it is more
stable to form the matrixA and then to solve a global
least-squares problem on the full wavenumber interval
in order to computeC. Thus all three concentration pro-
files are computed simultaneously. These profiles are
shown in Figure 8.

8.2. Comparison of the different approaches to the
computation of C

The most common way to compute a concentration
profile which is associated with a single pure compo-
nent spectruma is to use the pseudo-inversea+ so that
c = Da+ or C(:, i) = UΣt+ if the ith concentration pro-
file is considered. The benefit of computingC(:, i) via
υ∗ according to Theorem 4.1 is explained in Section 4.
Next C(:, i) is computed for the data set from Section
8.1 in three different ways:

1. Column-wise computation ofC(:, i) = UΣυ(i)∗

with υ(i)∗ by (9) for i = 1, 2, 3.
2. Column-wise computation ofC(:, i) = UΣt(i)+

with the pseudo-inversest(i)+ for i = 1, 2, 3.
3. By a global (simultaneous) least squares fit in order

to find C for known three pure component spectra
given row-wise inA.

Figure 9 shows the results. The results for the ap-
proaches 1. and 3. are very similar, whereas the differ-
ence between the second and the third approach is only
small for Rh(acac)(CO)2. With respect to the Euclidean
vector norm the distances

εi =
∥∥∥C(:, i) −C(global)

∥∥∥
2
/
∥∥∥C(global)

∥∥∥
2
, i = 1, 2, 3,

εi =
∥∥∥C̃(:, i) −C(global)

∥∥∥
2
/
∥∥∥C(global)

∥∥∥
2
, i = 1, 2, 3

with C = UΣυ∗ andC̃ = UΣt+ are as follows

ε = (0.0034, 0.0908, 0.0080),

ε = (0.0856, 4.5919, 0.0812).

8.3. Equilibrium of iridium complexes

A detailed analysis of the equilibrium of iridium
complexes for the hydroformylation of olefins has re-
cently been published [12]. The equilibria of var-
ious hydridocarbonyltriphenylphosphine-iridium cata-
lysts are analyzed at 373 K for varying partial pres-
sure of carbon monoxide betweenp(CO) = 10−2 to 3.9
MPa at a constant hydrogen partial pressure ofp(H2) =
1.0 MPa. The hydrido complexes were formed from
Ir(COD)(acac), withc(Ir) = 5.0 · 10−3mol L−1, and
10 equivalents of PPh3 under 2.0 MPa of synthesis gas
[12]. Here we consider a sequence ofk = 47 FT-IR
spectra, and each spectrum is taken atn = 913 fre-
quencies values in the interval [1900, 2150]cm−1. The
sequence of spectra is shown in Figure 10.

The PGA has been applied three times in order to ex-
tract the three dominant components. A particular chal-
lenge of this problem is that all pure component spectra
are highly overlapping. The reconstruction is based on
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Figure 7: Results of a spectrum-by-spectrum computation with the PGA. The three selected channel windows are [2005.5, 2019.2] cm−1,
[1813.1, 1822.5] cm−1 and [1872.1, 1894.4] cm−1. These channel windows are marked by a gray background. All spectra are normalized so
that the maximum in the window equals 1.
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Figure 9: Comparison of the three different approaches to computeC for the three pure components of the data set from Section 8.1. The global
fit provides the best results (by the solution of the highest dimensional least squares problem). The local (windowed) reconstruction with (9) gives
very similar results which shows that the PGA approach worksvery well. These two concentration profiles are much better thanC̃ = UΣt+ by
means of the pseudo-inverset+. The latter approach which is associated with the solution of a least squares problem in a one-dimensional space
results in a relatively poor approximation.
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Figure 10: Series ofk = 47 FT-IR spectra for an equilibrium mix-
ture of iridium hydrido complexes registered during a variation of the
carbon monoxide partial pressure, see Section 8.3.

the firstz= 3 left and right singular vectors. The chan-
nel windows and the weight factors are as follows (for
the third windowω2 = 50 appears to be large, but all
spectra are relatively smooth so that the contribution to
the target function is small)

window ω1 ω2 γ1 γ2 γ3 γ4

[2038.7, 2045.2] 0.05 0 10 0.03 0 0
[1934.7, 1942.9] 0.05 0 10 0.03 0 0.12
[2081.3, 2088.1] 0.005 50 2 0.03 0 0

Three hydrido complexes have been identified,
namely HIr(CO)3(PPh3), HIr(CO)2(PPh3)2 and
H3Ir(CO)(PPh3)2. The spectra for these three pure
components are shown in Figure 11. Once again, the
concentration profiles have been computed by solving
a global least-squares problem on the full wavenumber
interval since all three pure component spectra are
available. The concentration profiles are shown in
Figure 12.

8.4. PGA for weak peaks

In order to demonstrate the local amplification of
weak peaks in the PGA the spectral data set from Sec-
tion 8.1 is resumed. Now the wavenumber window
[1980, 1985] cm−1 is taken which is associated with the
index intervalI = [641, 649], see Figure 13. The peak
in this window is very small compared to the maximal
absorption since

maxi∈I D(:, i)
maxD

= 0.02.

Once again a number ofz= 4 singular vectors are used.
For f1 and f2 the weights are set toω1 = 0.05 andω2 =
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Figure 12: The pure concentration profiles for the three iridium com-
plexes as computed by a global least-squares fit.

0. For the optimization the constraint functionsg1 and
g2 with γ1 = 50 andγ2 = 10 are active. The weight
factors have a very different size due to the fact that the
normalization (2) affects onlyg1 but not f1 and f2. What
is finally found is the spectrum of the pure component
Rh(acac)(CO)2. The relative error of this solution called
aweak compared to the spectruma1, see Section 8.1 and
the leftmost sub-figure in Figure 7, is about 1.2% since

‖αaweak− a1‖2

‖a1‖2
= 0.012

with an optimized scaling parameterα = 0.022.

9. Conclusion

The Peak Group Analysis (PGA) has been presented
as a numerical algorithm which allows a step-by-step
computation of the pure component spectra from the
initial spectral data set for the chemical mixture. A cru-
cial requirement for a successful application of the PGA
is that certain single peaks or isolated peak groups can
be identified whose spectral profile is dominated by a
single pure component. Then this peak or peak group
is the starting point for a local optimization procedure
which results in a global spectrum of a pure component.
This global spectrum more or less reproduces the initial
peak or peak group. The mathematical algorithm of the
PGA is based on minimization of a target function to
which various weighted soft constraints are added. We
have also shown for experimental spectral data from the
rhodium- and iridium-catalyzed hydroformylation pro-
cess that the PGA is a useful tool for structure elucida-
tion.
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Figure 11: Results of a spectrum-by-spectrum computation with the PGA for the analysis of equilibria of iridium complexes. The three intervals
[2039, 2045] cm−1, [1935, 1943] cm−1 and [2081, 2088] cm−1 have been selected for three runs of PGA. The channel windowsare marked by
a gray background. Each spectrum has been normalized so thatthe maximum in the window equals 1. The band at 1933cm−1 of the rightmost
spectrum does not belong to the trihydride complex. It is perhaps an artifact due to low CO partial pressures.
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Figure 13: Application of the PGA to a weak signal (gray bar).The
resulting spectrum of Rh(acac)(CO)2 reproduces the spectrum which
is shown leftmost in Figure 7 with a relative error of about 4%.

For the authors of the present paper the PGA results
from of a multi-annual interdisciplinary research coop-
eration of catalytic chemists, from the Leibniz institute
for Catalysis, with numerical mathematicians. The al-
gorithm of the PGA has grown out of the desire to have
a reliable computational method which can identify the
correlation of single peaks (within the series of spectra
of a multicomponent system) to the remaining part of
the spectrum of a certain pure component.
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