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Abstract

Structure elucidation for the reactive or catalytic spscita chemical reaction system can significantly be supgorte
by spectroscopic measurements. If the spectroscopic datains isolated signals or groups of partially separated
peaks, then the identification of correlations betweenrdipesiks can help to determine the pure components by their
functional groups.

A computational method is presented which constructs frarertain frequency window, which contains a single
peak or a peak group, an associated pure component speatrtine éull frequency range. This global spectrum
reproduces the spectrum in the local frequency window deat, reproduces the contribution from the dominant
component in the local window. The method is called the Peadu® Analysis (PGA). The methodological back-
ground of the PGA are a multivariate curve resolution methnd the solution of a minimization problem with
weighted soft constraints. The method is tested for two exntal FT-IR data sets from investigations into equilib-
ria of hydroformylation catalysts based on rhodium andurial An implementation of the PGA is presented as a part
of the FACPACK software.

Key words: factor analysis, pure component decomposition, nonnegatatrix factorization, spectral recovery.

1. Introduction Chemometric§4] give a detailed overview on the wide
. ) o . range of chemometric methods and its mathematical
Spectroscopic methods in combination with chemo- anajysis. Without claiming any completeness we would
metric techniques are key tools for the determination of |ike to mention the evolving factor analysis [5], the win-
unknown chemical species in a reaction system. Here o factor analysis [6], which each can be combined
we consider a situation in which the course of a chem- \yith Manne’s theorems [7], as well as the target factor
ical reaction is recorded spectroscopically. If a series gpalysis [8] and, last but not least, the class of Multi-

of k spectra is taken and each spectrum is a vector of yrigte Curve Resolution (MCR) methods with hard and
absorbance values, then the spectral data can be storedoft constraints [9, 10].

row-wise in ak-timesn matrix D. The Lambert-Beer
law in matrix formD = CAsays thaD can be factored
in a product of two nonnegative matrices, namely in a
concentration facto€ and a spectral factoh. In the In the present paper our objective is a biffeient.
case of slightly perturbed, experimental data the aim is We do not directly seek to compute a honnegative fac-
to determine at least an approximate factorization. If torizationD = CA, but we try to extract single spec-
the reaction system contains a numbes ofdependent  tra and to identify related peak groups in order to de-
components, the@ e R¥S contains columnwise the  termine some of the species by their functional groups.
concentration profiles in time of tregpure components.  Our approach is driven by practical needs of the chemist
The spectral factoh € R" contains row-wise the pure  who has some presumptions and assumptions on the
component spectra. Such a factorizatiorDohas first species which might be found in the chemical reaction
been conducted for a two-component system by Lawton system. For instance in organo-metdatgtalytic chem-
and Sylvestre [1]. A fundamental problem of such fac- istry the (IR-)spectra of the reactants and the spectra
torizations is that the matrix factors are not unique due of the main reaction products are known, but the cat-
to the so-called rotational ambiguity [2, 3]. alytic active species and the catalyst preformation pro-
The four volumes of the book seri€mprehensive  cess is sometimes unknown [11]. However, reasonable
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assumptions on the catalytic active species can be made2.2. The general MCR approach
Together with the molecular point group of the catalyst
or its precursor, the character table provides insight into
active and characteristic vibrations. Alternatively one
can compute reliable approximations of the absorption
spectrum by quantum mechanical SCF computations or
DFT calculations. For these reasons that the chemist,
after having identified a certain signal (like stretching
vibrations of terminal carbonyl ligands in rhodium car-
bonyl complexes), would like to know if this signal is
part of a pure component spectrum which also includes
a characteristic signal that is associated with a further
functional group [12, 13]. In this paper we present a nu-
merical algorithm, called Peak Group Analysis (PGA),
which aims at finding correlations between peaks and
peak groups which are associated with the same pure
component. Mathematically, the algorithm uses a spe-
cific target function which includes a weighted combi- \itpy U, T and VT containing the first singular vec-
nation of soft constraints. The approach is based on &g and singular values. The associated transformation
local rank-one reconstruction; its application to spec- 1 ¢ ps<zijs g rectangular matrix. Furthdr € RS is
troscopic data with narrow and partially isolated peaks, the so-called Moore-Penrose pseudoinversg.oThis
which can typically be found in IR spectroscopic data, gvp hased reconstruction approach reduces the number
works very well. of degrees of freedom of the factorization problenszo
which is the number of matrix elements Bf Finally,
1.2. Overview the determination of feasible and chemically meaning-
ful matrix factorsC and A amounts to the computation
of a proper matrixi € R¥%,

The general approach to reconstruct the pure com-
ponent factorC andA is based on the singular value
decomposition (SVD) ob [1]. Let U € Rk 3 ¢ RN
andV € R™" be the factors of the SVD, so thit =
UZVT [16]. Furthermore les be the number of inde-
pendent components underlying the dBtafor noise-
free data the numbes equals the rank ob. ThenC
andA can be reconstructed only by using the fa&ft-
and right singular vectors [6, 8].

In the case of noisy data it is often advantageous to
work with a number ofz > s singular vectors for the
reconstruction o€ andA [10]. Then the mathematical
formulation reads

C = UxTH, A=TV' (1)

In Section 2 a short introduction to the basics of mul-
tivariate curve resolution techniques is given and the
idea of the PGA is explained. Section 3 presents the
mathematical foundation of the PGA and its target func- 2.3. Construction of a single pure component spectrum
tion. Further the soft cgnstraint functions are intro-  Equation (1) is a construction for the simultaneous
duced. Some mathematical theorems on the construc-formation of the spectra and concentration profiles for
tion of the concentration profiles are contained in Sec- g|| factors. In contrast to this the PGA determines the
tion 4. Section 6 refers to the FACPACK implemen- ,re component spectra, which are the rows\odtep-
tation of the PGA [14, 15]. Finally, the a_ppli_cation of. by-step. Mathematically a pure component spectrum
the P_GA to experimental FT-IR data sets is discussed in 5 ¢ R1xn is 3 linear combination of the right singu-
Section 8. lar vectors which belong to thelargest singular vec-
tors. The spectra are written as row vectors so ¢hat
has the forma = tV(;,1 : 2". Our task is to de-
termine the vectot € R of expansion coficients.
Thesez degrees of freedom can be reducedzte 1
since any nonzero scaling of the spectrum is without

The aim of the PGA is to identify those peaks or peak relevance. The Perron-Frobenius theory on the spec-
groups in a series of spectra taken from a chemical mix- trum of a nonnegative matrix [17] provides under mild
ture which can be assigned to the same pure compo-assumptions on the spectral data mafixsee Theo-
nent. The starting point is the specification of a fre- rem 2.2 in [15], that the first cé&cientt; is never equal
guency window which contains a certain peak or peak to zero. The mathematical argumentation is as follows:
group. Then the PGA intends to provide a pure com- the Perron-Frobenius theory guarantees YHatl) is a
ponent spectrum which in the given frequency window sign-constant vector. Without loss of generality it can be
more or less reproduces the original signal. The PGA assumed as a component-wise nonnegative vector. Or-
can be applied repeatedly in order to find all pure com- thogonality of this vector to any linear combination of
ponent spectra step-by-step. the remaining singular vectoY¥:, 2), .. ., V(:, n) proves
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that this linear combination must have positaredneg- contribution of one component is removed fr@rand
ative components. Since a feasible spectrum must havefinally and ideally only the noise remains. The expla-
only nonnegative components, any feasible spectrum nation is simple, but in practice such an approach has
must have a contribution fromi(:, 1). severe disadvantages due to the influence of noise. The
All this justifies to use a scaling so thiat= 1, which decisive point is that such a stepwise rank-1-downdate
for instance has been used in [18, 19, 14] and for the re- of D is very sensible with respect to noise, since the
solving factor analysis (RFA) [8]. Thuscan be written errors of all previous rank-1-downdates accumulate in

in the formt = t(1, w) with w € R™* 1 andt; > 0. D. For instance the subtraction of a rank-1-matrix may

Thus we get = t(1, W)V'. result in small negative componentsiyor the subtrac-
tion of a certain peak of a slightly perturbed amplitude

2.4. Window selection and normalization or frequency position could result in a small remain-

ing peak with a somewhat shifted frequency position.
of a channel window ] along the wavenum- All this adversely #&ects the accuracy of the subsequent

berfrequency axis. This window should contain a sin- 'ank-1-downdates. _ o
peaks or peak groups of the same pure COmponemspectral data matri® without subtracting rank-1 ma-
within the series of spectra is to be analyzed. The trices [21]. This reduces the impact of noise. If finally

channel windowy,, »;] contains the discrete wavenum- & Series ofs independent pure component spectra has
ber valuesy; with respect to the given grid. The set been determined, then the associated concentration fac-

| ¢ {1,...,n}is the maximal set of indices so that tor C can be computed by a “global” least-squares com-
putation. Such a procedure appears to be more stable.

The starting point of the PGA is the selection

ve <V < vy, foralliel.

. . 2.6. Applicationto IR data
For the following construction of a pure component
spectruma, which reproduces more or less the selected By construction the PGA can be applied to spectral

signal in the window ¥, v], it is useful to normalize  data which contains several narrow peaks and which

a€R"in | in away that also includes, at least for some time intervals, frequency
ranges in which no absorption is observed. If, contrary
rpe?-xai =1 (2) to the foregoing, all pure component spectra show an
absorption on the whole frequency range, then it would
Together with the non-normalized representator: be dificult for the PGA to extract the contribution from
t1(1, W)VT anda; = t1(1, W)V(i,:)" we prefertoworkin  a single component.
the following with the normalized form In particular the IR or Raman spectroscopy provide
T data with narrow peaks and several non-absorbing fre-
a=aw:= (Lw)V . ) 3) guency ranges. Then a step-by-step extraction approach
maxe (1, w) V(i, )1 could successfully be applied; this has clearly been

) , demonstrated by the BTEM software by Garland and

2.5. Stepwise extraction of the pure component spectra his group [21]. A further technique which is based on a
The PGA can be applied repeatedly to a given series local analysis is SIMPLISMA [22, 23] which has been
of spectra. In each cycle the spectrum of a single com- successfully applied to IR spectral data. In contrast to
ponent can be extracted. The method works very well this the U\/Vis spectroscopy results in spectra which
especially for IR spectroscopic data with its typically are rather unsuitable for an application of the PGA. Fi-
narrow and isolated peaks, see Section 8. If for a cer- nally, the PGA can principally be applied to NMR data
tain component the spectruan(row vector) has been  [24]; however the occurrence of the nuclear magnetic
extracted and if for this component the concentration resonance chemical shifts necessitates a proper data pre-
profile ¢ (column vector) is accessible, then the contri- processing.
bution of this component to the spectral data malix
can be remc_>ved byksubtracting a proper multiple of the 2.7. Relations to EFA, WFA and TFA techniques
rank-1-matrixca € R*" from D. The principles of such
a rank-1-downdate of a nonnegative matrix in orderto  The evolving factor analysis (EFA) [5] and the win-
construct in the end a complete nonnegative matrix fac- dow factor analysis (WFA) [6] are powerful techniques
torization has been analyzed in [20]. In every step the for the analysis of spectroscopic data. EFA analyzes
3



the evolution of the rank of a series of growing sub-
matrices ofD. WFA computes the concentration pro-
file of a certain component by using submatrices along
the time axis for an evolutionary process; together with
Manne’s theorem pure component information can be
extracted. There are some similarities between the WFA
and the PGA, but there are also twdfdrences. First,
PGA uses windows along the frequency axis. Second,
WFA and EFA are rather fixed computational proce-
dures, whereas the PGA is based on an optimization
process with a target function which includes several
regularization terms, see Section 3.

Finally, the PGA is very dferent from the target fac-
tor analysis (TFA) [8] where a given factor (spectrum)

is tested, whether it contributes to the spectral measure-

ment or not. For the PGA no spectrum has to be known
initially.

3. The target function for the PGA

Equation (3) shows the way how to compute a single
pure component spectruenby means of a row vector
w e R#1, Nextw is determined by the solution of a
minimization problem for a target function which in-
cludes several weighted constraints. The choice of the
constraint functions and their weight factors is a crucial

2. Norm of the discrete second derivative of the spec-

S

with Av being the wavenumber increment along
the equidistant wavenumber grid. The functin

is the sum of squares of the discrete second deriva-
tive of the spectruna with respect to equidistant
grid of wavenumber values. Bfg a smooth spec-
trum is favored.

n-1

2

=2

aj-1 — Zaj + aj+1

" )2

The constraint functions are introduced in Section 3.1.

3.1. Constraint functions

The construction of the soft constraints, also called
regularization functions, and their weighting is deci-
sive for the computation of meaningful pure component
spectra. In order to construct a flexible curve resolu-
tion method, which can be applied to several series of
spectra from dferent types of spectroscopic techniques
with their different typical shapes, it is useful to have a
stock of various regularization functions, see [21, 9, 10]
for diverse examples.

For the PGA the following soft constraints are avail-
able (and can or cannot be used depending on the
present conditions that, e.g., certain spectra are known

step. Their suitable selection depends on the type of the O &r€ not known):

spectroscopic data. The solution of constrained mini-
mization problems for the computation of nonnegative
matrix factorizations is a standard procedure in chemo-
metrics, see e.g. [25, 26, 27, 21, 9, 2, 28, 10].

The PGA target functiorf is formed by a weighted
mean of two functiong$; andf, which is combined with
several weighted soft constraints

g
fW) = waf(a[w]) + wafa(w]) + > y2 ai(alw]) (4)
i-1

with a[w] by (3); in the following we simply writea for
alw]. Thereinw; > 0 andy; > 0 are the weight factors.
The functionsf; andf, are:

1. Norm of the spectrum:
fy

A spectrum with a small integral and narrow peaks
is favored.
4

- Nonnegativity.

- Local reconstruction error,

- Distance (by the sum of squares) to a given pure

component spectrum. This constraint is similar to
the target factor analysis [8],

- Correlation with other pure component spectra.
All these constraint functions have been written in a
functional form depending oa. By (3) a depends on
w so that these functions essentially depend orzthé
components ofv.

Within each step of the optimization the current ap-
proximation of a spectruma can be used in order to
compute a temporary concentration profilevith re-
spect to the channel windowaccording to

V()T ()T
lla(hi3

The resulting paia andc allows an optimal reconstruc-
tion of D in the channel window; see Section 4 for the
mathematical analysis. It is important to note tband
aare only temporary approximations which are changed
within each step of the optimization procedure. A fur-
ther important point is thaa > 0 andD > 0 imply that

c=UXZv" with "= (5)



¢ > 0; a proof of this fact is given in Corollary 4.2. The 1,..., %,

result thatc > 0 shows that no further constraint func- & n

tion has to be added tbin order to guarantee the non- Z Z(A(i’ i) a,-)z.
negativity ofc. At the end of the iterative minimization,
Equation (5) can also be used to compute from the final

spectruma a final approximation of the concentration 3 2. Numerical solution of the minimization problem

i=1 j=1

profrl]lec. int £ , Con ‘ol The target functiorf in (4) defines a nonlinear least
Iov-\I/-S'e constraint functiong; : R" — R, read as fol- squares problem with — 1 free variables. In our FAC-

PACK implementation of the PGA, see Section 6 we
use a combination of genetic algorithm and of the ACM
software NL2SOL [29] written in FORTRAN.

A careful choice of the weight parameters, especially
)2 the choice ofw; andwy, is very important for comput-

1. Nonnegativity: The constraint function which is
used to favor an almost nonnegative solutida

n
=) minf[—+¢,0
. ,Z; (uanw B

Therein|| - || denotes the maximum norm which
is maximum of the absolute values of the com-
ponents. A small value > 0 is used to al-
low slightly negative components for which the ra- 4. Concentration profiles by local reconstruction
tio mina;/||al. is larger than-g; accepting such
small negative entries can be very helpful for find-
ing a solution in the case of noisy data. In Corol-
lary 4.2 it is shown that the associated concentra-
tion profile c is nonnegative, ih andD are non-
negative. Hence a constraint function on the non-
negativity ofc is not needed. with the pseudo-inverse of a, see e.g. Equation (5) of
[21]. With the representatiom= tVT of ait holds that

ing reliable and meaningful spectra. If a channel win-
dow is selected which contains peaks originating from
more than one component, then the local reconstruction
cannot be successful atd should be relatively small.

A well-known approach to construct the concentra-
tion profile ¢ which fits bests to a certain pure compo-
nent spectruna is to compute

c=Da"

2. Local reconstruction: With* by (5) andc = UZv*

the local reconstruction error is c=Da' = UxVvVTVvt = Utt.
NTa)\|I? i
9 = HZ (V(I, N v, )T 61|(|a)(|;|(2)] The pseudo-inverse ofeads
2

Lt vial  vTal

Thereina(l) andV(l, ;) are the vector resp. matrix It~ Haviz a3
which are reduced to the indices contained in the

index setl. Further|| - ||¢ is the Frobenius norm, so that

which is the square root of the sum of squares of ) VvTal

its argument. c=UZv withv= a2 (6)
3. Distance to a given spectruae R™": This con-  Thjs representation of is similar to the “windowed”

mally scaledato a

. v(l,:)Ta()’
n aa’ c=UXZv" withv" = Lg) (7)
Gs= ) (e -a)? with a=— la(hi;
. llalls . . o .
. In this section a proof is given that the windowed rep-
= llal? - aa’ resentation (7) is a suitable generalization of (6) which
[|&)2° has optimal reconstruction properties with respect to the

channel window!.

4. Correlation with other spectra: This constraint  The central ideas for the reconstructionmére as
function favors a solution with a small correla- follows: A single spectruna € R™" should be asso-
tion with other pure component specté, ), i = ciated with a single concentration profilee R so
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that the rank-1 matrixais a best approximation of the
spectral dat® within the channel window which is de-
termined by the index sét The restrictiorD|, of D to
the channel window is given by

D|, =uzv(l, )T

and the rank-1 matriga with a = tVT reads

ca= Uy tV' .
SN—— Y——
Cc a

The restriction otato the channel window is

ca, = UZvtv(l,)".

Proof. Due to the orthogonal invariance of the
Frobenius-norm [16] the distandé€v) can be simplified

f(v) = =V, )T - sutv(, )|

= ZZ: Z O'IZViZI- - ZZZ: O'IZU]'
=1

j=1 iel

z z 2
+ Z O'IZUI2 [Z tIViI) .
j=1 i€l

1=1

Zvij Zz:tlvil
1

i€l 1=

The gradient vector has the form
Vi) =0-222V(1,:)"V(,)t" + 2v(, ) tT13z%

and Vf(v*) = 0 as a necessary condition for an ex-

Under the assumption that the spectral signal in the tremum results in (7). The Hessian ) reads

channel windowl is determined only by a single com-
ponent, the dference function

f() = ||D|, - cal || = [Ju=v(1, )T - Uz tv (1, )|

is to be minimized.

In Theorem 4.1 and in Corollary 4.2 a minimizer
is determined. It is shown that the concentration profile
¢ = UZv* is nonnegative ifa andD(;, 1) are nonneg-
ative. Finally, Lemma 4.3 presents an error estimation
for C(;,i) — c.

Theorem 4.1. Let D € R®" with rank(D) > z be given
and let Ue R®*Z 3 € RZZand Ve R™ be the factors
of a truncated singular value decomposition of D. Fur-
thermore let Ic {1,..., n} be the index set of the chan-
nel window. The vector ¢ R™? determines a nonzero
spectrum a= tVT and it is assumed that the restriction
ofato I, which is denoted b){lazz a(l) does not vanish,
i.e.lla(l)]| > 0.

Then the local reconstruction error

f(v) = UV, )T - Uzutv(, )72 (8)
attains its minimum in* € R™2 with
L VLTV V0L)Ta)T o

IV(I,:)tTI3 lla(1)I13
With the associated optimal concentration profile ¢
UXv* the rank-1 reconstruction ca results in a rank-1

downgrade of D

rank® - ca) = rank®) - 1. (20)

H(v) = 2IV(l, ) tT]12 22 = 2l[a(l)[p X2

Since rankD) > zthe truncated matriX has the max-
imal rank and together witkja(l)|| > O the Hessian
H¢(v*) is a positive definite matrix. Henckeattains its
minimum inv*.

In order to prove (10) we need the following relation
for then x nidentity matrixI and column vectora, b €
R": The matrixl —ab' is regular if and only ia"b # 1.
This relation follows from the more general Sherman-
Morrison-Woodbury formula [16]. For the given special
case the proof is simple. I1f- ab' is regular, thenl(—
aba = a—a(b'a) # 0only if b'a # 1. To prove
the other direction one has to check that the inverse of
| —ab'is (I +ab"/(1- b?).

Fort andv* it holds that

*

VL)V T
CvVaL)TEE

so that
D-ca=D-UZvtV' = UZ(l - v*t)V'.

Sincel — v*tis a singular matrix with the rank— 1 the
same holds fob — ca. O

The concentration profile by Theorem 4.1 is non-
negative ifD anda are nonnegative. This is proved next.

Corollary 4.2. Let the assumptions of Theorem 4.1 be
satisfied and let , 1) > 0 as well as a= tVT > 0.

Then the associated concentratior=dJXv* is also
nonnegative.



Proof. SinceD(:,1) > 0 anda(l) > 0, it holds that A useful consequence of (12) is the following: If
VT(,)al) DG 1)al)T the inner products o& with all other pure component
s " — " >

c=UXZv" = UX > = 5>— =0 spectra within the window are equal to zero, then
lla(hilz lla(hiz ¢ = C(:,1) and the pure component concentration pro-
(11) file is reproduced exactly.
0 In Remark 4.4 an estimate for the ermr C(;, 1)

for the case that is constructed by the non-windowed
The factorsa andc arise by construction from alocal  pseudo-inverse dfin the formc = USt*. According to
factorization within the channel windolw If D = CAis our experience the windowed reconstructiom bﬁ/ 4.1
the correct global factorization &f, thenaandcshould  provides the better results for the concentration profiles
be (aside from scaling) recoverable as a certain row of compared to the construction with the pseudo-inverse of

A and as the associated column®§o thata = A(i, 1) t. The diferent approaches are compared in Section 8.2
andc = C(;, i) for a suitable index. for experimental data.

The diterence betweea (by the local construction)
and the associated colun@f:, i) (as determined by the
global factorization) depends on the compudiethd on
the absorption by the other species in the windown
error-estimation foc — C(;, i) is given in the following
lemma. 1

-C(;,1) —ZS:C(:,i)A(i,:)A(l, )T (13)

C =
Lemma 4.3. Let the assumptions of Theorem 4.1 be sat- 1AL, :)||§ —
isfied, let m be the number of channel indices in | and
let a(l) = tV(I,:)" and c as given in (7). Further let

Remark 4.4. Let the assumptions of Lemma 4.3 be sat-
isfied. If the concentration profile ¢ is computed by
¢ = UZt* with the pseudo-inverse bf t and A1,:) =
a=tVT, then the error vector e C(;, 1) reads

Its Euclidean norm is bounded from below and above in

D = CA be a feasible nonnegative factorization so that the form
aequals A1, :) onthe interval I, whichis@) = A(1,1). a<l|lc-C(, 1)<
Finally let .
. with
E =) C(AGI) o = Mav=z,slICC, DIZAG, DAL )T (14)
i=2 AL, )II? '
be the sum of all absorptions by all other componentsin S, ICE DIRAG, DAL, )T
the channel window |. B = 1AL )P (15)
Then the erroijc — C(;, 1)||2 is bounded from above i
as Proof. With a = A(1,:) =tV anda* = (tV7)T/IItVTI3
it holds that
llc—CC, Dz < Bl
T ARO)IR c=UZth = USt'/|it)5 = UV VL /|itv T3
Therein||E|lz = maxo ||[Ed]2/llall2 is the spectral oper- =D(tV")" = Da* = DA(1,:)"
ator norm. s
-3 HE A%
Proof. With ¢ = D(:, 1) a(l)/lla(l)I2 by (11) anda(l) = [; CE-DAG, ')]A(l’ )

A(1 :, 1) it holds that

s =C(, 1)+ ZC(:,i)A(i,:) AL )"
) ) AT [ ]
c= [; C(,i) AG, |)] e 3

This together withA(L, :)* = A(L,:)"/IIA(L, :)I3 results

_CL.1)+E a(l)’ . in (13). The bounds (14) and (15) can easily be proved.
lla()1i3 O
With respect to the Euclidean norm and the associated The diference (13) vanishes if and onlyAfi, :)A(1, :
spectral norm one gets )T = 0 for all spectrai = 2,...,s. This condition is
IE a7l =8 more restrictive compared to (12) where only a local
lle—CC. Dz = NE S T (12)  condition with respect to the channel winddvhas to
llaChit; 2 hold. Thus the error fot — C(;, 1) is expected to be
O larger compared to the estimate from Lemma 4.3.



5. Delimitation to alternative MCR methods

The strategy underlying the PGA method shows some
resemblance to the BTEM algorithm [21]. BTEM also

The PGA method is one among many alternative and allows a step-by-step extraction of the pure compo-

well-established MCR methods. Explicitly we would
like to mention the famous MCR-ALS toolbox [9], the
resolving factor analysis (RFA) [30], the SIMPLISMA
algorithm [22], the band target entropy minimization
(BTEM) [21] and the pure component decomposition
(PCD) [10].

All these methods focus on the computation of a sin-
gle nonnegative factorizatiod = CA. However, due
to the rotational ambiguity there are nearly always con-
tinua of nonnegative factorizations which can be com-
puted by global MCR-methods and which can be rep-
resented by the so-callefirea of Feasible Solutions
(AFS). Computationally the AFS can be determined,
e.g., by the FACPACK software [31, 32]. The strategy
of the first-mentioned MCR methods is to filter out only
a single factorization by means of soft constraints. A
reliable MCR method should provide a good approxi-
mation of the chemically correct solution. The general

nent spectra. However, the computational procedures
of PGA and BTEM are dferent. Compared to BTEM
the number of unknown variables is reduced froto

z— 1. Further, PGA works with a fferent construc-
tion of the associated concentration profile by using a
windowed pseudo-inverse construction. In BTEM the
pseudo-inverse is used for a global fit, whereas for PGA
the potentially more stable local approximation from (5)
is applied. See Lemma 4.3 and Remark 4.4.

5.2. Limitations of a step-by-step factorization

The higher robustness of PGA with respect to noise
by means of a windowed step-by-step decomposition
has to be paid with a partial loss of insight to the
global correlations between the factors. In other words,
step-by-step computed concentration profiles and spec-
tra must not necessarily result in fact@sandA with a
small reconstruction errdd — CA. Whenever the data

approach of all these MCR-methods is to construct a does not include systematic perturbations or a consider-

cost function which depends on the transformation ma-

able portion of noise one should first apply MCR meth-

trix T, see (1), and whose feasible matrix elements are i o RFA. MCR-ALS or PCD.

associated with the AFS. However, the minimization of

the soft-constrained cost function results in the desired

matrix factorsC and A. With this approach the com-

puted solution strongly depends on the choice of the

constraints. The numerical computation of the global
minimum of the cost function is sometimes dhdiult
numerical problem as the numerical minimization may
get stuck a local minimum.

5.1. Benefits of the PGA algorithm
A characteristic trait of the PGA algorithm is that

6. PGA and the FACPACK software

The FACPACK software is a program package for the
computation of multi-component factorizations and the
area of feasible solutions for two- and three-component
systems by means of the polygon inflation method
[14, 15]. This software also allows the simultaneous
representation of andA and a step-by-step construc-
tion of the pure component factors by using arguments
from the complementarity theory [31].

the pure component spectra are computed step-by-step, The peak group analysis (PGA) is a separate module

whereas other methods like RFA or PCD compute all

spectra (and concentration profiles) simultaneously. Ac-

cording to our experience, PGA is a robust algorithm for

of the forthcoming revision 1.2 of FACPACK, which is
planned to be published in the second half of the year
2015. The current revision of the software can be down-

medium-to-strong perturbed spectral data. The methodloaded from the web page

also works very well in case of systematic perturba-
tions for example from a suboptimal baseline correc-
tion. Whenever MCR methods like RFA, MCR-ALS or
PCD show dificulties in the simultaneous computation

of the spectra and concentration profiles, the PGA algo-
rithm can be applied in order to try a stepwise decompo-
sition. Then PGA may extract single pure components

and can be able to uncover correlations within highly

httpy/www.math.uni-rostock.décpack

7. Analysis of a model problem

Next the PGA method is applied to a three-
component model problem with a numberloE 201

overlapping peak groups. The technical reason for thesespectra each witiln = 501 channels. The simulated
abilities are the window analysis of the spectra and the concentration profiles, the columns ©f and the pure

reduced number of variables of the cost function.
8

component spectra, the rows &f are shown in Figure
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Figure 1: The concentration profiles, the columnsCofare shown
together with the pure component spectra, the rows &r the model
problem from Section 7. In a second step noise is added tatieipt
D=CA

Case of weakly overlapping peaks Case of strongly overlapping peaks
1

100

60

100

40

60 80 40 80
Figure 2: Window selection in the series of spectra with radrdis-
tributed noise. Left: Three windows positioned on the vgelparated
peaks, Right: Three windows positioned on the three styoogér-

lapping peaks.

1. The spectral data matrix B = CA. Noise of dif-

Recovered spectra Recovered spectra

1, 1,

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2 A J\ /
0 I 0

20 40 60 80 100 20 40 60 80 100

Figure 3: PGA results on the pure component spectra for dahad-
ing random normal distributed noise. Left: Recovered pampmo-
nent spectra for the case of isolated peaks, see left subpfogure
2. Right: Recovered pure component spectra for the caseonighy
overlapping peaks, see right subplot in Figure 2. The caigpure
component spectra are plotted in black lines.

deviation of 0.002 and mean 0). As the model prob-
lem includes three independent components, three sep-
arate windows are selected for the calculation of the
three pure component spectra. First, small windows are
placed at the three isolated peaksgt= 25, xp = 30
andxp = 35. These three narrow windows in gray color
are shown in the left subplot of Figure 2. These win-
dows are the basis for the identification of the associated
pure component spectra.

The weights factors; andy;, see Equation (4), are
set tow = 0.1,’)/1 = 10,’}/2 =15 anda)g =Y3=Y4=
0. The reconstruction is based on a number &f 3

ferent types, namely random noise and systematic noisesingular vectors. The computed pure component spectra
or bias, are added to the data in order to demonstrateare shown in Figure 3. The relative reconstruction error
the capabilities of the PGA method. The perturbed data

sets are shown in Figure 2 (case of random noise) and

in the left subplot of Figure 5 (systematic noise). More
information is given below.

7.1. Overlapping peaks

The pure component spectra are constructed in a way
that each spectrum contains three peaks and each peak
is a Gaussian. One peak for each spectrum is relatively

isolated; these peaks are centeredpat 25, X9 = 30
andxp = 35. A second peak of each spectrum strongly

o - AT, ) — aPSAYGi, 3l
- IACTIO)(i, :)]|2 '
allows to compare the results with the original solutions.

We gete = (4.7-1073, 1.5-1072, 1.1-107?). Thus PGA
works very well.

i=1,23, (16)

7.3. PGA for strongly overlapping peaks
Next we demonstrate the capability of the PGA to

identify peak correlations and peak groups for the case
of overlapping peaks. Therefore the three windows are

overlaps with one peak of the other pure component Placed around the three centegs= 50, X = 53 and

spectra; the three peaks are centered at 50, X = 53
andxp, = 56. A third peak of each spectrum is cen-
tered atXx, = 80 and has the amplitude 1. Thus this
peak completely overlaps with the other spectra. How-
ever, the three peak widths are slightlyfdient. See the
right subplot of Figure 1 for these three spectra.

7.2. PGA applied to windows on well-separated peaks

First PGA is applied to the data matriX plus ran-
dom noise (normal distributed noise with a standard
9

Xo = 56 which belong to strongly overlapping peaks.
Once again the three pure component spectra are recon-
structed from the noisy data, see Section 7.2 onthe noise
intensity. The window selection is plotted by gray bars
in the right subplot of Figure 2.

For the PGA we used the weight factavg = 0.1,
v1 = 10,v2 = 0.5 andw; = y3 = y4 = 0. The number
of singular vectors ig = 3. The solutions are presented
in the right subplot of Figure 3. Even for these strongly
overlapping signals PGA works very well and the cor-
rect single pure component spectra have been identified
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Figure 4: The singular values of the data maliincluding system-

atic noise k) and the singular values of the non-perturbed daja (

The non relatively large singular values, o5, og are a clear indica-
tor of the presence of systematic noise (bias).

with errors less than one percent. The error vector (16)

readse= (3.7-103,7.9-103, 6.8-1073).

7.4. PGA and systematic noise

Next PGA is applied to the data including systematic
noise. Therefor® is computed as

~ 50— 4-)?

500 (A7

3

.

Dij= ) CirArj+ 0.005(2 _
=1

fori = 1,...,201 andj = 1,...,501. The series of

Series of spectra and windows PGA results

1
0.8
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0.4

)

0.2
20 40
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Figure 5: Left: The three PGA windows positioned on the sitpn
overlapping peaks. Right: The PGA results of the pure corapbn
spectra. Even in presence of systematic noise PGA can tgricen-
tify the pure component spectra.

clusters and on the catalyst formation for the iridium-

catalyzed hydroformylation; see [33, 10, 12] for exper-

imental details. Further an application of the PGA to

weak signals is presented in Section 8.4. In this section
the frequency axis for all spectra is given in wavenum-

bers.

8.1. Rhodium-carbonyl formation from

Rh(acac)(CO)

The displacement of the organic ligand acetylaceto-
nate in Rh(acac)(CQpy CO is an unwanted side reac-
tion in the formation of a catalytically active rhodium-
hydridocarbonyl complex. In this experiment at 303 K
and 20 bar synthesis gas pressure (CO:H.:1) the ini-

complex

spectraincluding these perturbationsis shown in the left tial concentration of Rh(acac)(CO¥ 6.6-10*molL™*

subplot of Figure 5. The first eight singular values of
the data matrixD are shown in Figure 4. Due to the
perturbation, see (17), the singular valagsos andog

are very dfferent from the non-perturbed data. For non-

in the solvent cyclohexane. Under these conditions the
"unwanted” rhodium carbonyl clusters RiLO),, and
Rhe(CO),5 together with Rh(acac)(C@pre the domi-
nating absorbing components. The spectrum of the sol-

perturbed data the matrix has the rank 3. Hence thesevent cyclohexane has been subtracted from the FT-IR
singular values are equal to zero aside from rounding spectroscopic data. A number bf= 292 spectra has

errors.
For the PGA computation the windows are located
on the strongly overlapping peaks. A numberzof

4 singular vectors is used. The selected windows and of this system withs =

been taken; each spectrum has 1479 channels. A
subset of the series of spectra is shown in Figure 6.

In order to compute the pure component spectra
3 dominating components

the computed pure component spectra are presented inve have selected three separate channel windows for

Figure 5.

the application of the PGA. Each of these three win-

Even in presence of systematic noise (bias) and for dows [20055, 20201]cn?, [18751, 18939]cm ! and

the strongly overlapping peaks it is possible to identify

[18127, 18234] cmi! contains only a single peak. The

the correct pure component spectra with the PGA. The PGA has been applied three times with= 4 and the

error vector reads = (2.8-1072, 3.7-1072, 5.1-10°?).

8. Application to IR data from experimental stud-
ies of equilibria of rhodium and iridium hydro-
formylation catalysts

In this section the PGA is applied to FT-IR spec-
troscopic data on the formation of rhodium-carbonyl
10

weightsw; = 0.15 (first run to determine the first com-
ponent),w1 = 0.3 (second run to determine the sec-
ond component) an@d; = 0.15 (third run for the third
component). Furthew, = 0 in all program runs. In
all these casd; and f, according to Equation (4) have
been used. Further, only the constraint functgrand

02 have been used with the weight factggs= 10 and

v2 = 1. This parameter selection has been used for all



8.2. Comparison of the flerent approaches to the
computation of C

o2 The most common way to compute a concentration
.§o.2 profile which is associated with a single pure compo-
= nent spectruna is to use the pseudo-inveraé so that
%o_l c = Da* or C(;,i) = UZt* if the ith concentration pro-

file is considered. The benefit of computi@g;, i) via
v* according to Theorem 4.1 is explained in Section 4.
Next C(:,i) is computed for the data set from Section
8.1in three dferent ways:

1. Column-wise computation of(;,i) = UZu(i)*

time [h] 0 189V()avenumber [cm] with U(|))k by (9) fori = 1, 2, 3.
2. Column-wise computation oE(:,i) = UZt(i)*
Figure 6: A subset of th& = 292 spectra for the formation of with the pseudo-inverse§)* fori = 1,2, 3.

rhodium-carbony! complexes from Rh(acac)(€0) 3. By aglobal (simultaneous) least squares fit in order

to find C for known three pure component spectra
given row-wise inA.
x 107 Concentration profiles Figure 9 shows the results. The results for the ap-

7" proaches 1. and 3. are very similar, whereas tltewdi
_________________ ence between the second and the third approach is only
o P small for Rh(acac)(CQ) With respect to the Euclidean
5l vector norm the distances
© ’
1S 7
<4l —Rh(acac)(CO) | & = ||C(:, i) - COP/||c@,,  i=123
% ‘ "'Rm(co)lﬁ — =. : lobal lobal .
g5 A - Rh(CO), | & = [|CC. i) - O, sflceer],, =123
o ’
§27 with C = USv* andC = UXt* are as follows
1—;" ____________ e = (0.0034 0.0908 0.0080)
0:" -------- £ =(0.0856 4.5919 0.0812)

50 100 150 200 250
time [h] S S
8.3. Equilibrium of iridium complexes

Figure 8: The concentration profiles (absolute values)Herst= 3

: A detailed analysis of the equilibrium of iridium
components by a global least-squares fit.

complexes for the hydroformylation of olefins has re-
cently been published [12]. The equilibria of var-
ious hydridocarbonyltriphenylphosphine-iridium cata-

three PGA computations. The results, namely the pure YStS are analyzed at 373 K for varying partial pres-

; _ 102
component spectra of Rh(acac)(GORh(CO);, and sure of carbon monoxide betwep'(CO) =10“t03.9
- MPa at a constant hydrogen partial pressurp(éf,) =
Rhg(CO),4 are shown in Figure 7. d
1.0 MPa. The hydrido complexes were formed from

The concentration profiles of these three components Ir(COD)(acac), withc(Ir) = 5.0 - 103mol L™, and
can be computed by the techniques introduced in Sec-10 equivalents of PRtunder 2.0 MPa of synthesis gas
tion 4; the use of Equation (9) is recommended. How- [12]. Here we consider a sequencekoE 47 FT-IR
ever, in the present situation the three spectra of the spectra, and each spectrum is takemat 913 fre-
three-component system are known. Hence it is more quencies values in the interval [19@150]cnt. The
stable to form the matriA and then to solve a global sequence of spectra is shown in Figure 10.
least-squares problem on the full wavenumber interval The PGA has been applied three times in order to ex-
in order to comput€. Thus all three concentration pro- tract the three dominant components. A particular chal-
files are computed simultaneously. These profiles are lenge of this problem is that all pure component spectra
shown in Figure 8. are highly overlapping. The reconstruction is based on

11
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Figure 7: Results of a spectrum-by-spectrum computaticih #ie PGA. The three selected channel windows are [Z0@0192] cm L,

[18131, 18225] cm ! and [18721, 18944] cm L. These channel windows are marked by a gray background. palits are normalized so
that the maximum in the window equals 1.

(10  Rh(acac)(CO) x 107 Rhy(CO)12 x 107 Rhg(CO)16
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Figure 9: Comparison of the threeffdirent approaches to comp@efor the three pure components of the data set from SectianThé global
fit provides the best results (by the solution of the highasedsional least squares problem). The local (windowechmstruction with (9) gives
very similar results which shows that the PGA approach weeky well. These two concentration profiles are much betlten€ = UXt* by

means of the pseudo-inverse The latter approach which is associated with the solutiosm least squares problem in a one-dimensional space
results in a relatively poor approximation.
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Figure 10: Series ok = 47 FT-IR spectra for an equilibrium mix-
ture of iridium hydrido complexes registered during a vioia of the

carbon monoxide partial pressure, see Section 8.3. ) ) . .
Figure 12: The pure concentration profiles for the threeundcom-

plexes as computed by a global least-squares fit.

the firstz = 3 left and right singular vectors. The chan-

nel windows and the weight factors are as follows (for 0. For the optimization the constraint functiogjsand
the third windoww, = 50 appears to be large, but all g, with y; = 50 andy, = 10 are active. The weight
spectra are relatively smooth so that the contribution to factors have a very fierent size due to the fact that the

the target function is small) normalization (2) fects onlyg; but notf; andf,. What
) is finally found is the spectrum of the pure component
window | w1 w2 y1 72 s v Rh(acac)(CQ) The relative error of this solution called

[20387,20452]) | 005 O 10 003 O O
[19347,19429]| 005 O 10 003 O 012
[20813,20881] | 0.005 50 2 03 0 O

aweak COMpared to the spectruaa, see Section 8.1 and
the leftmost sub-figure in Figure 7, is about 1.2% since

lleaweak — aull2
Three hydrido complexes have been identified, llaall2

namely HIr(CO}(PPh), HIr(CO)(PPhk), and
Hslr(CO)(PPh),. The spectra for these three pure
components are shown in Figure 11. Once again, the
concentration profiles have been computed by solving 9. Conclusion
a global least-squares problem on the full wavenumber
interval since all three pure component spectra are
available. The concentration profiles are shown in
Figure 12.

=0.012

with an optimized scaling parameter= 0.022.

The Peak Group Analysis (PGA) has been presented
as a numerical algorithm which allows a step-by-step
computation of the pure component spectra from the
initial spectral data set for the chemical mixture. A cru-
8.4. PGA for weak peaks pial requiremenF fora successfgl application of the PGA

o is that certain single peaks or isolated peak groups can

In order to demonstrate the local amplification of e jgentified whose spectral profile is dominated by a

weak peaks in the PGA the spectral data set from Sec'single pure component. Then this peak or peak group

tion 8.1 is resumed. Now the wavenumber window s the starting point for a local optimization procedure
[1980 1985] cn1* is taken which is associated with the  \yhich results in a global spectrum of a pure component.
index intervall = [641, 649], see Figure 13. The peak  Thjs global spectrum more or less reproduces the initial
in this window is very small compared to the maximal  heak or peak group. The mathematical algorithm of the
absorption since PGA is based on minimization of a target function to

which various weighted soft constraints are added. We
=0.02 have also shown for experimental spectral data from the

rhodium- and iridium-catalyzed hydroformylation pro-
Once again a number af= 4 singular vectors are used. cess that the PGA is a useful tool for structure elucida-
For f; and f, the weights are set 10, = 0.05 andw, = tion.

13
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Figure 11: Results of a spectrum-by-spectrum computatiitim ttve PGA for the analysis of equilibria of iridium compéex The three intervals
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Figure 13: Application of the PGA to a weak signal (gray bde

resulting spectrum of Rh(acac)(COeproduces the spectrum which

is shown leftmost in Figure 7 with a relative error of about.4%
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For the authors of the present paper the PGA results
from of a multi-annual interdisciplinary research coop-
eration of catalytic chemists, from the Leibniz institute
for Catalysis, with numerical mathematicians. The al-
gorithm of the PGA has grown out of the desire to have
a reliable computational method which can identify the
correlation of single peaks (within the series of spectra
of a multicomponent system) to the remaining part of
the spectrum of a certain pure component.
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