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SUMMARY

An a posteriori error estimator is presented for a subspace implementation of Preconditioned Inverse
Iteration, which derives from the well-known Inverse Iteration in such a way that the associated
system of linear equations is solved approximately by using a preconditioner. The error estimator is
integrated in an adaptive multigrid algorithm to compute approximations of a modest number of the
smallest eigenvalues together with the eigenfunctions of an elliptic differential operator.

Error estimation is applied both within the actual finite element space (in order to estimate
the iteration error) as well as in its hierarchical refinement of higher order elements (to estimate
the discretization error) which gives rise to a balanced reduction of the iteration error and of the
discretization error in the adaptive multigrid algorithm.

KEY WORDS: Symmetric eigenvalue problem; Preconditioning; Multigrid; A posteriori error
estimation.

1. Introduction

Using adaptive discretization methods for the numerical solution of partial differential
equations arising from problems in physics and engineering, numerical approximation within
a prescribed tolerance can often be gained with only a small portion of the work which is
necessary when uniform grid refinement is employed. Whereas a priori error estimation gives
asymptotic rates of convergence as the mesh parameter h tends to zero, one needs for adaptive
methods a posteriori error estimators to provide practical criteria to control the adaptive mesh
refinement and to construct a stopping condition for the iterative solver.

Adaptive discretization methods and a posteriori error estimators can nevertheless be applied
to construct efficient solvers for the eigenproblem. The structure of the eigenvalue problem
leads to a modified approach and to some extensions, e.g. for treating invariant subspaces of
eigenvectors in an appropriate manner.

A recent survey on a posteriori error estimators has been given by Verfiirth [25] discussing the
most frequently used error estimators which have been developed in the last two decades. For
example, in the software package PLTMG [2] for solving elliptic partial differential equations,
the triangle oriented error estimator of Bank and Weiser [3] is implemented, which is based
on the solution of small Neumann problems on each triangle. For edge oriented local error
estimation, see for instance Deuflhard, Leinen and Yserentant [8] and Zienkiewicz et. al. [28].
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For the generalized eigenvalue problem Friberg [13] constructed an a posteriori error estimator
describing the relative change in an eigenvalue for a hierarchical refinement. The error estimator
presented here is based on a similar quantity, namely the first order term of a Taylor expansion
of the Rayleigh quotient around the actual iterate.

This work presents the mathematical concept underlying the a posteriori error estimation
for a subspace implementation of Preconditioned Inverse Iteration on a sequence of adaptively
generated grids. Preconditioned inverse iteration (PINVIT) derives from inverse iteration
(INVIT or also called inverse power method) in a way that the associated system of linear
equations is solved approximately by using a preconditioner [21, 22]. The extension of
preconditioned inverse iteration to a subspace algorithm is analyzed in [20].

The remaining part of this paper is organized as follows: In Section 2 we introduce
preconditioned inverse iteration and show how to transfer the convergence theory to the
generalized eigenvalue problem, which appears necessary since the results in [21, 20] are only
given for the standard eigenvalue problem. In Section 3 an error estimator for eigenvalue
problems is presented. In Section 4 the iteration error estimator as well as the discretization
error estimator are derived, which prepare the ground for the construction for an adaptive
multigrid solver. Finally, the results of some numerical experiments are given in Section 5.

2. A preconditioned eigensolver for the generalized eigenvalue problem

2.1. The eigenproblem and its discretization

Let Q Cc R?, d = 1,2, 3, be a connected, bounded, polygonal domain with mixed homogeneous
Dirichlet and Neumann boundary conditions and consider the eigenvalue problem

a(u,v) = X (u,v), v e H(Q), (1)

where H(Q) consists of all functions of a certain Hilbert space V' vanishing on the Dirichlet
boundary. The bilinear form a(-,+) corresponds to a self-adjoint, coercive, elliptic differential
operator and (-,-) is the inner product in V. E.g. for the Laplacian, V is a subspace of
the Sobolev space H>?(Q) and (-,-) is the usual L?*(Q) inner product. Here, our aim is to
determine approximations of a modest number of the smallest eigenvalues A together with its
eigenfunctions w.

Therefore, we consider a finite element discretization of (1) which leads to the following
generalized matrix eigenvalue problem

Al‘i:/\iMl‘i, i:l,...,n, (2)

where the finite element space is assumed to have the dimension n. Usually, A € R**" is
called the stiffness matrix and M € R®*™ the mass matrix. Both matrices are assumed to
be symmetric and positive definite. Moreover, they are typically very large and sparse. For
simple test problems the dimension n may exceed 10° even on standard present—day personal
computers. Obviously, these matrices cannot be stored in the computer as full matrices but
program routines are provided to compute the matrix—vector products Az and Mz. Moreover,
A typically has a large spectral condition number; e.g. for the Laplacian the condition number
behaves like A~7 in the mesh parameter h.

The eigenvalues of the generalized matrix eigenvalue problem (A, M) may have arbitrary
multiplicity and are put in an order so that 0 < A; < ... < A,. The corresponding eigenvectors
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z; are assumed to satisfy ||z;||3; = (wi, Mz;) = 1, where (-,-) denotes the Euclidean norm.
Then the Rayleigh quotient associated with the generalized matrix eigenvalue problem is given
by

(z, Ax)

o) = 3y (3)

2.2. Gradient type solvers for the eigenproblem

Our goal is a partial solution of the eigenvalue problem (2), i.e. we are interested in computing
some of the smallest eigenvalues together with their invariant subspace. The large number of
unknowns rule out the use of any eigensolvers that rely on dense matrices or their factorizations
like the QR or Jacobi method. We cannot even factor A or M by the LU or Cholesky
decomposition because of a lack of the necessary computer storage. In other words, we are
forced to construct an iterative eigensolver in a so—called matriz—free environment.

The most simple eigensolver satisfying the mentioned restriction is based on the idea to
reformulate the eigenvalue problem (2) as an optimization problem for the Rayleigh quotient
(3). Following the idea of Kantorovich [15] as well as Hestenes and Karush [14] one can correct
a given iterate z in the direction of the negative gradient of the Rayleigh quotient in order to
decrease the Rayleigh quotient of the new iterate.

Since the gradient of the Rayleigh quotient (3) for a given iterate x is given by

VA(z) = m(m« _ Aa) M), (4)

the so—called gradient method for the eigenproblem has the form
=12 —w(Az — XNz)Mz). (5)

The new iterate 2’ has a decreased Rayleigh quotient for a proper choice of the scaling
parameter w. In the best case w is determined in a way that the Rayleigh quotient of the new
iterate =’ takes its minimum. For the latter choice the scheme is called the steepest descent
method.

As long as the residual vector Az — A(z) Mz is nonzero, which means that z is no eigenvector
of A, the Rayleigh quotients of the gradient method (steepest descent) form a strictly monotone
decreasing sequence of real numbers, which (usually) tends to the smallest eigenvalue A;.
Then the iterates themselves converge to an associated eigenvector. Unfortunately the gradient
scheme (5) is known to suffer from poor convergence for ill-conditioned A [6]. Preconditioning
can provide some cure.

2.3. Preconditioned gradient eigensolvers

Applying preconditioning to the gradient eigensolver (5) can improve its convergence
properties. For the best multigrid preconditioners one can even guarantee grid-independent
convergence and thus (quasi—) optimal computational complexity for the iterative solver. The
preconditioner B~! (which is also often called an approximate inverse of A) is assumed to
satisfy the estimate

do(z, Bz) < (z, Az) < 8 (z, Bx), z € R”, (6)
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where dy and §; are positive constants. Here, we prefer the more convenient assumption of a
properly scaled preconditioner B~! for which

|11 =B Alla < 7. (7)

Therein 7 is a positive constant, v € [0,1), and || - ||4 denotes the operator norm induced by
A, cf. also Section 2.5.

Now preconditioned gradient eigensolvers can be derived by premultiplying the residual in
(5) by the preconditioner. This leads to the scheme

=2 —wB Az — \(z)M2). (8)

The assumption (7) of the properly scaled preconditioner B~! allows us from now on to set
w = 1. There is a vast literature on the convergence theory of (8), predominantly written by
Russian authors; but the estimates contained in these works are only asymptotically sharp.
See D’yakonov [9] and Knyazev [16] for a review.

A new approach to the convergence analysis of (8) has been presented in [21, 22], where also
sharp and non—asymptotic convergence estimates have been derived. The idea of this analysis
is based on an alternative derivation of (8) by means of approximatively solving the system of
linear equations associated with inverse iteration, i.e. for a given iterate x the new iterate 7 is
the solution of the linear system

Az = MMz, ©))

for some k # 0. First observe that the choice of k is immaterial, since inverse iteration is
invariant with respect to the scaling of the iterates. Setting x = A(z) paves the way for
applying preconditioning to solve (9), since then the residual of (9) vanishes for = converging
to an eigenvector. Writing down the error propagation equation for the approximate solution
of (9) for this choice of x we obtain

2 = Nz)A™' Mz = (I — B~ A)(z — \(z)A™' Mz). (10)

In this equation the initial error z — A(z)A~! M= is premultiplied by the error propagation
matrix resulting in the final error ' — A\(z)A~! Mz, where ' approximates #. Now the key
point is that (10) can be rewritten in the simple form (containing no inverse of A)

¥ =z — B '(Az — \(z)Mz). (11)

To sum up, we have derived the iteration (8) by approximating inverse iteration. For this
reason we also call (11) the scheme of preconditioned inverse iteration (PINVIT). The new
approach to its convergence analysis in [21, 22] exploits the fact that (10) has a simple geometric
interpretation, i.e. the set of all the possible new iterates (under the assumption (7)) is a ball
whose center \(z)A~! Mz is defined by the result of inverse iteration. This geometric view
turns out as a valuable tool for the analysis.

2.4. Subspace implementation of preconditioned inverse iteration

In the following we introduce the subspace implementation of preconditioned inverse iteration.
Therefore, let an s—dimensional subspace of the R™ be spanned by the vectors v;, for i =
1,...,s, which are assumed to be the Ritz vectors of (A, M). Then for V = [vy,...,vs] € R"*®
it holds

VTAV = © = diag(dy,...,0,) and VIMV =1, (12)
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where I € R**¢ is the identity matrix. The Ritz vectors are assumed to be in an order so that
the positive Ritz values 6; are increasing with i.

In order to generalize preconditioned inverse iteration to a subspace method, which is
to determine an invariant subspace of eigenvectors corresponding to some of the smallest
eigenvalues, we rewrite (10) in matrix terms

V=AMVO+(I-B 1AV -A1MVO). (13)
Its simplified representation (containing no inverse of A) in analogy to (11) reads
V=V -B YAV — MV0). (14)

Therein the preconditioner B~! is assumed to satisfy (7).

Once again, we have the two representations (13) and (14) of the preconditioned subspace
iteration. The first representation (13) shows its relation to inverse iteration (INVIT). Inserting
the best possible preconditioner, i.e. B = A, in Equation (13) one obtains

V=A1MVeO. (15)

Then V is the result of inverse iteration (for the generalized eigenvalue problem) if applied to
the subspace spanned by the columns of V. The convergence of inverse iteration in analyzed
for instance in [7, 23]. In the standard representation of INVIT the (nonsingular) diagonal
matrix © in (15) equals the identity matrix. But © has no influence on the Ritz values and
Ritz vectors of V, since it only gives rise to a column scaling of V. Approximate solution
of (15) for V immediately leads to Equation (13), which simply is the corresponding error
propagation equation. Therefore, V in (13) equals the result of inverse iteration A~'MV O
plus a perturbation term given by the product of the error propagation matrix I — B~'A and
the correction V — A~! MV ® made by inverse iteration. The correction term V — A~' MV ©
tends to the zero matrix if the column space of V' converges to an invariant subspace of
eigenvectors of (A, M).

Once computed V by (14), the Rayleigh-Ritz procedure is applied to determine the
approximate eigenvectors and eigenvalues. The Ritz vectors v, i = 1,...,s, of the column
space span(V) define the columns of V', and the corresponding Ritz values 0, are the
diagonal elements of the matrix @'. Thus the preconditioned subspace eigensolver iterates
the transformation V, @ — V', ©'.

Different attempts have been made to analyze (14) in its simplified form with M = I.
Bramble et al. [5] have analyzed Equation (14) and have shown convergence under restrictive
assumptions on the initial space; but the algorithm was not related to inverse iteration. For
an analysis of some simplified preconditioned subspace schemes see [10, 11, 9, 16]. In all these
works the convergence theory is based on a direct analysis of Equation (14), which is commonly
related with preconditioned gradient methods for the eigenvalue problem, see Section 2.2.

In contrast to that, the analysis in [20], for M = I, attacks Equation (13) and derives
sharp convergence estimates for the Ritz values. The convergence theory is mainly based on
an analysis of the geometry underlying preconditioned inverse iteration, see [21, 22] for the
analysis of the preconditioned vector (s = 1) scheme. In [20], treating the subspace algorithm
(14), it is shown that the convergence estimates for each Ritz value are the same as those
which have been derived for the Rayleigh quotient of the vector scheme (11) in [22].

In the next theorem the results given in [20] are extended to the generalized matrix eigenvalue
problem (2) emerging from the finite element discretization, while the operator representation
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in [5, 20, 21, 22] only treats the standard eigenvalue problem. Theorem 2.1 does not consist in
a trivial substitution of the Euclidean inner product by the one induced by M, but recurs on
the error propagation equation underlying (13).

Theorem 2.1. Consider the generalized eigenproblem for (A, M) given by (2) with the
eigenvalues 0 < A\ < Xy < ... < N\, of arbitrary multiplicity. The preconditioner B~ is
assumed to satisfy (7) for a v € [0,1).

Let an s—dimensional subspace V be defined by (12). Then the Ritz values 6., ...,605 converge
linearly to eigenvalues of (A, M). For each of these 6; it holds that:

If 6; € Ak, Ak;+1) for some index k;, then either 8 < Ay, (unless 8, < Xix1) or it holds that

R ,
S @) < (7 =025 A (8, i =1 (16)
k;+1
where N
K — .
A ki1 (k) = TL@

Proof. First we show that full rank of V' in (13) implies full rank of V. For any nonzero y € R
we have

IVylla A MV Oy + (I = BT A)(V — AT MVO)ylla
AT MVOylla - I(I - BT A)(V = A7 MVO)|a
AT MV Oylla — I(V — AT MVO)ylla
AT MV Oy[% — I(V — A~ MVO)yll%
[A T MVOylla+ [I(V = AT MVO)y||a
vyl N

A= MVOylla+ I(V = A= MVO)y||4
where we have used the relation VT A(V — A~ MV©) = 0 in the last step. Since rank(V) = s,
we have ||[Vy||a > 0 and ||[A"*MVOy||4 > 0 so that rank(V) = s.

To show (16), a Cholesky decomposition of M = CCT is used to transform (2) to the
standard eigenvalue problem for A = C~'AC~T. Then (2) with y; = CTz; reads
while the Rayleigh quotient (3) transforms to

(AVARAY]

0,

(y, Ay)
Aily) = .
A=)
The scheme (13) with V = CTV reads
CTV = A"'WeO + (I - B AV - A7'V0), (18)

where the symmetric, positive definite B~' = CTB~!C fulfills
II-B7 Al <7,

in the operator norm induced by A. Hence Equation (18) is nothing else than the
preconditioned eigensolver for standard eigenvalue problem (17) and Theorem 3.3 in [20] as
well as Theorem 1 in [17] can be applied. Finally, the Ritz values of CTV with respect to A
equal those of V with respect to (A, M); this proves the bound (16) for the Ritz values. [
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Theorem 2.1 guarantees at least linear convergence for each Ritz values toward a smaller
eigenvalue. We emphasize that the convergence estimates for 6; only depend on the nearest
eigenvalues A\, and Ag,4+1 enclosing 6;. Hence, the convergence estimate is independent of
the mesh size and so of the number of the unknowns. This guarantees a grid independent
convergence as known from preconditioned solvers for the linear systems arising from
discretizing boundary value problems.

2.5. More general preconditioners

In practice, assumption (7) on the quality of the preconditioner is often satisfied for scaled
preconditioners only. Whenever we assume (6) to hold for positive constants v and -y, we
have as the smallest bound for the scaled preconditioner 9B~!

T—9B Al < =00 .y o1, 19
|| o< 2220 =y (19)

with the scaling constant ¢ = 2/(yo + 71). In general ¥ is not available computationally. But
the situation is not hopeless since optimal subspace approximations can be determined from

[V,B~'(AV — MV@)] € R**?$

by means of the Rayleigh—Ritz method where the results do not depend on the scaling of the
preconditioner. This iteration is called preconditioned steepest descent and is guaranteed to
converge faster than PINVIT (the faster decrease of the Rayleigh quotients is assured by the
Courant—Fischer principle).

3. A posteriori error estimation

A posteriori error estimation for the given eigenproblem is based on an estimate from above
for the deviation of each Ritz value from the nearest eigenvalue of problem (2). This estimate
derives from evaluating a suitable norm of the gradient of the Rayleigh quotient within the
given Ritz vector. The estimator is easily computable from known quantities. In contrast to
a posteriori error estimation for the numerical solution of boundary value problems, our a
posteriori error estimator works on a subspace of eigenvector approximations. This gives us
the freedom to couple error estimation to a specific single eigenfunction or to a subset of
eigenfunctions in order to compute these with an increased accuracy. We will discuss some
strategies in Section 5.

We do not try to bound the error of the Ritz vectors. Such an error, for instance, can be
measured by the canonical angles enclosed by the subspace of exact eigenfunctions and its
numerical approximation. The main difficulty with such a bound is to be seen in the fact that
the acute angles enclosed by the eigenvector approximations generated by PINVIT and the
eigenspace to the smallest eigenvalues are not monotone decreasing, see Sec. 3.2 in [22].

Given a certain Ritz pair (v;, 6;), we employ a Taylor expansion of the Rayleigh quotient in
order to estimate the distance of 8; to the nearest eigenvalue of A. If ¢; is the i—th column of
V, as defined by (14), then the first order Taylor expansion of (3) reads

@) = Mvi = di) = Mvi) = (VA(vi), di) + O(||di]|*).
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Since VA(v) = (vQTv) (Av — A(v)Mw), we can rewrite the negative first order term F; in the
form

2
(Ui, M’U,)

Therein, r; = Av; — M(v;)Mv; denotes the residual of v;. To compute F; only a single dot
product is required, since the residual r; and the preconditioned residual d; are known while
computing B~'(AV — MVO) and V by Equation (14). Therefore, F; can serve as a simple
estimate for A(v;) — A(¥;), i.e. the decrease of the Rayleigh quotient in the i—th column of V/
for a step of (14).

In Theorem 3.1 we show that F; can even serve as an error estimator for the larger distance
of the Ritz value 6; to the nearest eigenvalue of A.

Fi = (VA(v;),d;) = (ri, d;) = 2||d; |- (20)

Theorem 3.1. Let v; be the i—th Ritz vector, i.e. the i—th column of V', and let m be the index
so that 6; € [Am, Am+1). Then it holds that

AmAm A
(0 = Am) Ams1 — 6;) < =Ry s

- A =

where the error estimator F; is given by Equation (20).

Proof. Tt is first shown that for any v, ||v||py = 1, with A = A(v) € [Am, Amt1) and
r = Av — AMwv the following Temple—type inequality holds (see D’yakonov and Orekhov [12])

AN = An) Ay — A)
>\m>\m+1

< [Irf-1- (22)

To prove (22) one starts from a basic inequality
(Am_Aj)(Am+1_Aj) >0, j=1,...,n,

which leads to
S Am + Amt1 — Aj

Bl
by A Amtt

Expanding v in eigenvectors of A, that is v = )
S, ¢ =1 and thus

Jj=17j

n

j=1 Cjj, one directly obtains ol]3, =

n

1, A Amit = A 5 Am o Amgt — A
Loy $ntinnh,

179 j=1

n
)

Am>\m+1

J
or

. AA = Am) (Ams1 — A)
A A =—-1]> .
Z 7 o >\m>\m+1

Showing that the left hand side of the last inequality is equal to ||r|[%_, completes the proof
of (22). Inserting v; and #; one obtains by using (7)

0:(0; — Am)(Amt1 — 05)
AmAm+1

<|lrilli-r <

< g Il = 7= el

1
1—v
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To form a judgment on the quality of the error estimator one has to distinguish between the
influence of the preconditioner, which is fully controlled by (7) and +y, and the error introduced
by the inequality (22). Let us show that ||r||4-1 in Equation (22) is also bounded from above.
By using Theorem 2.1 in [22] (the proof is based on the Lagrange multiplier method) one has
for A € A, Am+1)

Bpm+1(A) < |I7l|a-1 < Bin(N),

where B ;(A) := A(A/Ai = 1)(1 = A/);). Tt is easy to show that the bound B ; is attained if
the vector v, whose Rayleigh quotient is assumed to be equal to A and whose residual is given
by r = Av — Av, is spanned only by eigenvectors to the eigenvalues A; and A;. But in general
there is a wide corridor between the curves B; ;11(A) and By ,(A). We obtain for A € [A;, A;]
9 oo 9 oo
N B;;(A) <0, Dy B; ;(A\) >0,

and limy, oo Bin()\) = A?/A\; — 1 so that By, appears as an extremely bad bound. But
B, is too pessimistic, since the more the actual iterate v approximates some eigenvector of
A (which will be the case, sooner or later), the better the influence of eigenvectors to other
(larger) eigenvalues vanishes and the error estimator (21) will provide a more reliable bound,
cf. the numerical results in Section 5.

4. The iteration and discretization error estimators

To construct an adaptive multigrid algorithm for the approximate solution of the elliptic
eigenproblem (1) one requires both an iteration error estimator as well as a discretization
error estimator. While the iteration error estimator should provide practical criteria for
the termination of the preconditioned eigensolver (with respect to the actual grid), the
discretization error estimator should make available local error indicators to control the mesh
refinement.

The iteration error estimator is simply based on the evaluation of F; within the given finite
element space S, in which the matrix eigenvalue problem (2) is the discretization of the given
elliptic eigenproblem. Let us now assume that the Ritz value 6; is of sufficient quality so that
0; € [Ai, Ai+1)- Then Equation (21) for m = i reads

20;(1 — )
AiXit1

We emphasize that the error estimator F; results from known quantities (the residual and the
preconditioned residual) by evaluating a simple dot product. Aside from the constants on the
left hand side of (23) a small estimate F; indicates that actual Ritz value €; is near to the
eigenvalue ;.

To estimate the discretization error we introduce an enlarged subspace Q D S of higher order
finite elements. The eigenvalues and the Ritz values in these spaces are denoted as follows:
The eigenvalues \; are those of the continuous problem (1) and the eigenvalues \; s (\;,o) are
defined by (2) if the continuous eigenproblem is discretized with respect to S (Q). Finally, the
Ritz values 6; are approximations of the eigenvalues A; s. Then we have

(6 — M) N\i1 — ;) < F. (23)

Ai < Xijo < Ais <4,
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since S C Q C H(Q).
In the following we use a saturation assumption in terms of eigenvalues

Aio = Ai <BNis —Ni) (24)

with a positive f < 1. The Courant—Fischer principles guarantee that § < 1 and the theory
presented in Chapter 6 of [24] shows that § is bounded away from 1 if we assume, for instance,
S (Q) to consist of piecewise linear (quadratic) finite elements and if the triangulation is fine
enough. The next lemma (cf. Lemma 2.1 in [4]) shows that the total error §; — \; and the

discretization error \; s — A; can be estimated from above by 6; — A; o. To estimate the latter
difference we later apply our error estimator.

Lemma 4.1. The saturation assumption (24) is equivalent to each of the following inequalities:
0; — N < L(t%

-p

Ais — A < %ﬂ(ki,s — i, Q)- (26)

Proof. First we show that the saturation assumption implies (25) and (26). Since

- i, 0), (25)

1
1

0; — Xi,g=10; — i+ X — Xi,o > 6; — i — B(Ais — /_\2) >(1-75)6; — /_\2),
we have (25). For 6; = \; s the inequality (26) follows immediately. To see that the saturation
assumption follows from (26) we calculate

Ais —Ai=Xo—Ai+Xis—Aio>Xo— A+ (1=B)N\is—N\)
from which we obtain (24). O

To be concrete we assume S to consist of piecewise linear finite elements and realize the
discretization error estimator in @, which is assumed to be the finite element space of piecewise
quadratic elements. A hierarchical decomposition of Q is given by the direct sum

Q=SaV, (27)

where the piecewise quadratic functions in V' vanish on all nodes defined by the grid associated
with S. For a more detailed description of Q see [8].

To estimate the discretization error within a given Ritz pair (v;,0;) we write down the
discretization of the continuous eigenvalue problem (1) with respect to the hierarchical
extension (27). We obtain, instead of (2), the following generalized eigenvalue problem for
the 2 x 2 block matrices Ag and Mg

(A Asv)ﬂ — )\ <M Msv>w,
Ayvs Ago HQ = A0Q Mys Moo ne

The (1,1) submatrices A (M) of Ag (Mg) coincide with those in (2). We further define
Vo = (vi,0)", whose residual ri,0 in Q is given by

(28)

ro = Aovio — 0 Mopio = ( Av; — 0; Mv; >

Aysv; — 0; Mysv;
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Now assume a symmetric positive definite preconditioner Bg to be given so that the spectral
radius of I — BélAQ, in analogy to (7), is equal to yg < 1. Applying the error estimator (21)
within Q results in

Fi,q :=2||dioll%, (29)

where d; g = (Bg)™'r; o is the preconditioned residual.
If 6; € [Mi,0, Ni+1,0), then the error estimator F; o allows to estimate the term 6; — A; g on
the right hand side of (25) and thus implicitly the discretization error in the form
20;(1 —

7o) (0i = Ai,o)(Nir1,0 — 0:) < Fiq. (30)
Ai,0Ait+1,0

5. Numerical results

The a posteriori error estimators have been integrated within an adaptive multigrid algorithm
to solve elliptic eigenproblems [19]. Starting with an initial coarse grid, the subspace variant of
PINVIT is applied on each grid of a sequence of adaptively generated refined grids. Especially
for only weakly differentiable eigenfunctions we obtain a highly nonuniform grid, maximally
refined in the critical region near the origin, exemplifying the efficacy of the adaptive scheme.

The iteration error estimator is used to define a stopping criterion for (14) (with respect
to the actual subspace) and the discretization error estimator is employed to derive a
mesh refinement strategy. The central idea, which motivates the derivation of the stopping
condition, is that the iteration error and the discretization error on the sequence of adaptively
generated grids should be reduced in a balanced ratio, cf. [8] who use this concept for the
numerical solution of boundary value problems. Such a balancing is reasonable, since solving
the eigenproblem on a given mesh with high accuracy is ineffective if the discretization error
is still large. If on the other hand the iteration error with respect to the actual grid is large,
then the local error indicators, which are responsible for the mesh refinement, are expected to
be of low accuracy. For the details of this implementation see the technical report [19]. In [18]
the concept is applied to differential operators in the R3.

As a test problem we consider the weak form of the Laplacian eigenproblem

—Au = Au,

on the unit circle, centered at the origin, with a slit along the positive z axis. Homogeneous
Dirichlet boundary conditions are supposed on the boundary of the circle and on the top of
the slit, while homogeneous Neumann boundary conditions are given on the bottom of the slit.

The numerical results can be compared with the exact eigenfunctions and eigenvalues. In
polar coordinates with 6 € [0,27) and r € [0, 1] these are given by

ug,i(r,0) = csin(ab)Jy(war), Ak = (wa71)2,

where a = % + % and for integer separation constants k > 0 and [ > 1. Therein, J,(r) is
the Bessel function of first kind and fractional order «, see [1], whose positive zeros wq; are
assumed to increase with [. Table I gives the 8 smallest eigenvalues. We further note that for
k = 0 and k£ = 1 the derivative %Ja is unbounded at r = 0 so that the eigenfunctions ug,
and wuy; are only in H!(Q).



12 K. NEYMEYR

k Y £ Jo unbounded
L] 0o 1 773333 +
2. 1 1 1218714 +
3./ 21 17.35078 -
4.1 3 1 2319939 -
51 4 1 2971453 -
6.| 0 2 3488252 +
7.1 5 1 36.88189 -
8. 1 2 44.25756 +

Table I. Separation constants k, | and eigenvalues rounded to five digits after the period. For k = 0,1
the derivative of the Bessel function J(a,r) is unbounded at the origin.

P={1} P={3) P={1,23)
i 0; Ai i 0; Ai i 0; i Aio

1 7777 7.769 7.744 8.219 8.116 7.934 7.796 7.786 7.751
2| 12.244 12.243 12.197 | 12.244 12.237 12.194 | 12.230 12.230 12.192
3| 17462 17.460 17.365 | 17.422 17.418 17.363 | 17.422 17.422 17.359

Table II. Final Ritz values 6; in S and stationary values \; (A\i,0) in S (Q).

All test calculations have been performed within an eight dimensional subspace (s = 8). As
a preconditioner the (scaled) hierarchical basis preconditioner is used, see Yserentant [26, 27].
The spectral properties of Bg in Q are described in [8].

Since PINVIT is applied to an s dimensional subspace, the termination criterion with
respect to the actual grid as well as the grid refinement strategy can be coupled to a certain
subset P C {1,...,s} containing indexes of critical eigenfunctions of low regularity. Then the
adaptive multigrid eigensolver should give best results for those eigenfunctions whose indexes
are contained in P. To demonstrate the dependence of the generated grid on the index set P,
we make three different choices.

1. P = {1}. To approximate up; with an unbounded partial derivative at the origin a
highly non—uniform triangulation is expected.

2. P = {3}. The derivatives of us; are bounded. Thus the triangulation will be more
uniform.

3. P = {1,2,3}. The final triangulation should reflect the properties of both cases above.
The influence of the second eigenfunction us 1(r,6) at the critical origin is insignificant
since uq o(r, ) is the steeper function in r in the neighborhood of the origin.

In Figure 1 the initial triangulation consisting of 40 triangles is shown where on only 10 inner
nodes the function is not fixed to zero by the boundary conditions. Additionally, contour plots
of the first three eigenfunctions are given. Table II lists the three smallest final Ritz values
#; on the final grid for which the subspace eigensolver is stopped. Table II also contains the
eigenvalue approximations A; (\; o) for which the iteration is stationary with respect to the
final finite element space of piecewise linear (quadratic) finite elements. Figure 2 shows the
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{1,2,3}, 2381 nodes.

{3}, 2374 nodes. d) P

P

Figure 2. E Final triangulations. a) P = {1}, 2385 nodes. b) Zoom of [-27'°,27'°) in (a). c)
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| # nodes # inner nodes tmin  ftmax

P={1} 2385 2237 3 16
P ={3} 2374 2215 4 6
P={1,2,3} | 2381 2201 4 14

Table III. Number of nodes of the final triangulation and number of nodes that are not on the Dirichlet
boundary. tmin s the number of uniform grid refinements with respect to the initial triangulation and
tmax the mazimal depth of the triangulation.

final triangulations for each choice of P. The corresponding grid parameters are listed in Table
ITI. Highly non-uniform triangulations with a final depth of 16 (14) are gained for the first
(third) choice of P giving evidence for the efficacy of the adaptive scheme. As anticipated, the
grid is maximally refined near to the origin.

Comparing the values A\; in Table II one observes that for P = {1} this stationary value is
about 4% smaller than for P = {3} and only about 0.2% smaller than for P = {1,2,3}. Similar
results for A3 and P = {3} in comparison with the other choices of P are gained. Apparently,
P = {i} is the best strategy to generate a grid on which \; achieves its minimum. The final Ritz
values 6; are approximations of the eigenvalues of the continuous problem within the 1 percent
range. The remaining error is mainly caused by the discretization error. The calculation with
P = {1,2,3} leads to a grid which allows comparatively good approximations of all three
eigenvalues. The depth of the final triangulation is close to the depth in the case P = {1}.

The a posteriori error estimators in the case P = {1} are now studied in more detail. Figure

3 documents the iteration error of the Ritz values by plotting Hl(k) — A, for i = 1,2,3, for

the computations described above. The Ritz values ng) are those which are generated by
the PINVIT subspace scheme within the adaptive process. The iteration error of the third
eigenvalue is the largest one (despite of the final grid). Each stair in the plot corresponds to
the appearance of a new grid and on each grid the iteration error is reduced by the rate of a
geometric progression, see [20].

The reduction of the discretization error is illustrated by plotting the difference ng) —AL,0
(solid line) in Figure 4. Additionally, the dotted line in Figure 4 represents the error estimator
F; o, see Equation (29), which roughly behaves like the error in Q but tends to underestimate
the real error. To make sure that the error of all iterates is measured with the same norm, all
Ritz vectors generated in the course of the adaptive process have been prolongated to the final
grid. After this, error estimation is applied to all iterates. But note that this is an artificial
situation since in the adaptive process the error estimator is only called with respect to the
actual finite element space and will then provide more accurate estimates.
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Figure 3. Convergence of the eigenvalues 91-(k) — \; for P = {1}. Abscissa: Iteration number of (14).
Ordinate: Solid line i = 1 solid line; broken line i = 2; dotted line i = 3.
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Figure 4. Error estimation for the case P = {1} against the iteration number of (14). Estimator F; o
dotted line. Solid line 6 — X\ o.
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