
A posteriori error estimation for ellipti
 eigenproblemsKlaus NeymeyrMathematis
hes Institut der Universit�at T�ubingen, Auf der Morgenstelle 10,72076 T�ubingen, Germany; neymeyr�na.uni-tuebingen.deSUMMARYAn a posteriori error estimator is presented for a subspa
e implementation of Pre
onditioned InverseIteration, whi
h derives from the well{known Inverse Iteration in su
h a way that the asso
iatedsystem of linear equations is solved approximately by using a pre
onditioner. The error estimator isintegrated in an adaptive multigrid algorithm to 
ompute approximations of a modest number of thesmallest eigenvalues together with the eigenfun
tions of an ellipti
 di�erential operator.Error estimation is applied both within the a
tual �nite element spa
e (in order to estimatethe iteration error) as well as in its hierar
hi
al re�nement of higher order elements (to estimatethe dis
retization error) whi
h gives rise to a balan
ed redu
tion of the iteration error and of thedis
retization error in the adaptive multigrid algorithm.key words: Symmetri
 eigenvalue problem; Pre
onditioning; Multigrid; A posteriori errorestimation. 1. Introdu
tionUsing adaptive dis
retization methods for the numeri
al solution of partial di�erentialequations arising from problems in physi
s and engineering, numeri
al approximation withina pres
ribed toleran
e 
an often be gained with only a small portion of the work whi
h isne
essary when uniform grid re�nement is employed. Whereas a priori error estimation givesasymptoti
 rates of 
onvergen
e as the mesh parameter h tends to zero, one needs for adaptivemethods a posteriori error estimators to provide pra
ti
al 
riteria to 
ontrol the adaptive meshre�nement and to 
onstru
t a stopping 
ondition for the iterative solver.Adaptive dis
retization methods and a posteriori error estimators 
an nevertheless be appliedto 
onstru
t eÆ
ient solvers for the eigenproblem. The stru
ture of the eigenvalue problemleads to a modi�ed approa
h and to some extensions, e.g. for treating invariant subspa
es ofeigenve
tors in an appropriate manner.A re
ent survey on a posteriori error estimators has been given by Verf�urth [25℄ dis
ussing themost frequently used error estimators whi
h have been developed in the last two de
ades. Forexample, in the software pa
kage PLTMG [2℄ for solving ellipti
 partial di�erential equations,the triangle oriented error estimator of Bank and Weiser [3℄ is implemented, whi
h is basedon the solution of small Neumann problems on ea
h triangle. For edge oriented lo
al errorestimation, see for instan
e Deu
hard, Leinen and Yserentant [8℄ and Zienkiewi
z et. al. [28℄.



2 K. NEYMEYRFor the generalized eigenvalue problem Friberg [13℄ 
onstru
ted an a posteriori error estimatordes
ribing the relative 
hange in an eigenvalue for a hierar
hi
al re�nement. The error estimatorpresented here is based on a similar quantity, namely the �rst order term of a Taylor expansionof the Rayleigh quotient around the a
tual iterate.This work presents the mathemati
al 
on
ept underlying the a posteriori error estimationfor a subspa
e implementation of Pre
onditioned Inverse Iteration on a sequen
e of adaptivelygenerated grids. Pre
onditioned inverse iteration (PINVIT) derives from inverse iteration(INVIT or also 
alled inverse power method) in a way that the asso
iated system of linearequations is solved approximately by using a pre
onditioner [21, 22℄. The extension ofpre
onditioned inverse iteration to a subspa
e algorithm is analyzed in [20℄.The remaining part of this paper is organized as follows: In Se
tion 2 we introdu
epre
onditioned inverse iteration and show how to transfer the 
onvergen
e theory to thegeneralized eigenvalue problem, whi
h appears ne
essary sin
e the results in [21, 20℄ are onlygiven for the standard eigenvalue problem. In Se
tion 3 an error estimator for eigenvalueproblems is presented. In Se
tion 4 the iteration error estimator as well as the dis
retizationerror estimator are derived, whi
h prepare the ground for the 
onstru
tion for an adaptivemultigrid solver. Finally, the results of some numeri
al experiments are given in Se
tion 5.2. A pre
onditioned eigensolver for the generalized eigenvalue problem2.1. The eigenproblem and its dis
retizationLet 
 � Rd , d = 1; 2; 3, be a 
onne
ted, bounded, polygonal domain with mixed homogeneousDiri
hlet and Neumann boundary 
onditions and 
onsider the eigenvalue problema(u; v) = �� (u; v); v 2 H(
); (1)where H(
) 
onsists of all fun
tions of a 
ertain Hilbert spa
e V vanishing on the Diri
hletboundary. The bilinear form a(�; �) 
orresponds to a self{adjoint, 
oer
ive, ellipti
 di�erentialoperator and (�; �) is the inner produ
t in V . E.g. for the Lapla
ian, V is a subspa
e ofthe Sobolev spa
e H1;2(
) and (�; �) is the usual L2(
) inner produ
t. Here, our aim is todetermine approximations of a modest number of the smallest eigenvalues �� together with itseigenfun
tions u.Therefore, we 
onsider a �nite element dis
retization of (1) whi
h leads to the followinggeneralized matrix eigenvalue problemAxi = �iMxi; i = 1; : : : ; n; (2)where the �nite element spa
e is assumed to have the dimension n. Usually, A 2 Rn�n is
alled the sti�ness matrix and M 2 Rn�n the mass matrix. Both matri
es are assumed tobe symmetri
 and positive de�nite. Moreover, they are typi
ally very large and sparse. Forsimple test problems the dimension n may ex
eed 106 even on standard present{day personal
omputers. Obviously, these matri
es 
annot be stored in the 
omputer as full matri
es butprogram routines are provided to 
ompute the matrix{ve
tor produ
ts Ax andMx. Moreover,A typi
ally has a large spe
tral 
ondition number; e.g. for the Lapla
ian the 
ondition numberbehaves like h�d in the mesh parameter h.The eigenvalues of the generalized matrix eigenvalue problem (A;M) may have arbitrarymultipli
ity and are put in an order so that 0 < �1 � : : : � �n. The 
orresponding eigenve
tors



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 3xi are assumed to satisfy kxik2M = (xi;Mxi) = 1, where (�; �) denotes the Eu
lidean norm.Then the Rayleigh quotient asso
iated with the generalized matrix eigenvalue problem is givenby �(x) = (x;Ax)(x;Mx) : (3)2.2. Gradient type solvers for the eigenproblemOur goal is a partial solution of the eigenvalue problem (2), i.e. we are interested in 
omputingsome of the smallest eigenvalues together with their invariant subspa
e. The large number ofunknowns rule out the use of any eigensolvers that rely on dense matri
es or their fa
torizationslike the QR or Ja
obi method. We 
annot even fa
tor A or M by the LU or Choleskyde
omposition be
ause of a la
k of the ne
essary 
omputer storage. In other words, we arefor
ed to 
onstru
t an iterative eigensolver in a so{
alled matrix{free environment.The most simple eigensolver satisfying the mentioned restri
tion is based on the idea toreformulate the eigenvalue problem (2) as an optimization problem for the Rayleigh quotient(3). Following the idea of Kantorovi
h [15℄ as well as Hestenes and Karush [14℄ one 
an 
orre
ta given iterate x in the dire
tion of the negative gradient of the Rayleigh quotient in order tode
rease the Rayleigh quotient of the new iterate.Sin
e the gradient of the Rayleigh quotient (3) for a given iterate x is given byr�(x) = 2(x;Mx) (Ax� �(x)Mx); (4)the so{
alled gradient method for the eigenproblem has the formx0 := x� !(Ax� �(x)Mx): (5)The new iterate x0 has a de
reased Rayleigh quotient for a proper 
hoi
e of the s
alingparameter !. In the best 
ase ! is determined in a way that the Rayleigh quotient of the newiterate x0 takes its minimum. For the latter 
hoi
e the s
heme is 
alled the steepest des
entmethod.As long as the residual ve
tor Ax��(x)Mx is nonzero, whi
h means that x is no eigenve
torof A, the Rayleigh quotients of the gradient method (steepest des
ent) form a stri
tly monotonede
reasing sequen
e of real numbers, whi
h (usually) tends to the smallest eigenvalue �1.Then the iterates themselves 
onverge to an asso
iated eigenve
tor. Unfortunately the gradients
heme (5) is known to su�er from poor 
onvergen
e for ill{
onditioned A [6℄. Pre
onditioning
an provide some 
ure.2.3. Pre
onditioned gradient eigensolversApplying pre
onditioning to the gradient eigensolver (5) 
an improve its 
onvergen
eproperties. For the best multigrid pre
onditioners one 
an even guarantee grid{independent
onvergen
e and thus (quasi{) optimal 
omputational 
omplexity for the iterative solver. Thepre
onditioner B�1 (whi
h is also often 
alled an approximate inverse of A) is assumed tosatisfy the estimate Æ0(x;Bx) � (x;Ax) � Æ1(x;Bx); x 2 Rn ; (6)



4 K. NEYMEYRwhere Æ0 and Æ1 are positive 
onstants. Here, we prefer the more 
onvenient assumption of aproperly s
aled pre
onditioner B�1 for whi
hkI �B�1AkA � 
: (7)Therein 
 is a positive 
onstant, 
 2 [0; 1), and k � kA denotes the operator norm indu
ed byA, 
f. also Se
tion 2.5.Now pre
onditioned gradient eigensolvers 
an be derived by premultiplying the residual in(5) by the pre
onditioner. This leads to the s
hemex0 := x� !B�1(Ax� �(x)Mx): (8)The assumption (7) of the properly s
aled pre
onditioner B�1 allows us from now on to set! = 1. There is a vast literature on the 
onvergen
e theory of (8), predominantly written byRussian authors; but the estimates 
ontained in these works are only asymptoti
ally sharp.See D'yakonov [9℄ and Knyazev [16℄ for a review.A new approa
h to the 
onvergen
e analysis of (8) has been presented in [21, 22℄, where alsosharp and non{asymptoti
 
onvergen
e estimates have been derived. The idea of this analysisis based on an alternative derivation of (8) by means of approximatively solving the system oflinear equations asso
iated with inverse iteration, i.e. for a given iterate x the new iterate x̂ isthe solution of the linear system Ax̂ = �Mx; (9)for some � 6= 0. First observe that the 
hoi
e of � is immaterial, sin
e inverse iteration isinvariant with respe
t to the s
aling of the iterates. Setting � = �(x) paves the way forapplying pre
onditioning to solve (9), sin
e then the residual of (9) vanishes for x 
onvergingto an eigenve
tor. Writing down the error propagation equation for the approximate solutionof (9) for this 
hoi
e of � we obtainx0 � �(x)A�1Mx = (I �B�1A)(x � �(x)A�1Mx): (10)In this equation the initial error x � �(x)A�1Mx is premultiplied by the error propagationmatrix resulting in the �nal error x0 � �(x)A�1Mx, where x0 approximates x̂. Now the keypoint is that (10) 
an be rewritten in the simple form (
ontaining no inverse of A)x0 = x�B�1(Ax� �(x)Mx): (11)To sum up, we have derived the iteration (8) by approximating inverse iteration. For thisreason we also 
all (11) the s
heme of pre
onditioned inverse iteration (PINVIT). The newapproa
h to its 
onvergen
e analysis in [21, 22℄ exploits the fa
t that (10) has a simple geometri
interpretation, i.e. the set of all the possible new iterates (under the assumption (7)) is a ballwhose 
enter �(x)A�1Mx is de�ned by the result of inverse iteration. This geometri
 viewturns out as a valuable tool for the analysis.2.4. Subspa
e implementation of pre
onditioned inverse iterationIn the following we introdu
e the subspa
e implementation of pre
onditioned inverse iteration.Therefore, let an s{dimensional subspa
e of the Rn be spanned by the ve
tors vi, for i =1; : : : ; s, whi
h are assumed to be the Ritz ve
tors of (A;M). Then for V = [v1; : : : ; vs℄ 2 Rn�sit holds V TAV = � = diag(�1; : : : ; �s) and V TMV = I; (12)



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 5where I 2 Rs�s is the identity matrix. The Ritz ve
tors are assumed to be in an order so thatthe positive Ritz values �i are in
reasing with i.In order to generalize pre
onditioned inverse iteration to a subspa
e method, whi
h isto determine an invariant subspa
e of eigenve
tors 
orresponding to some of the smallesteigenvalues, we rewrite (10) in matrix terms~V = A�1MV�+ (I �B�1A)(V �A�1MV�): (13)Its simpli�ed representation (
ontaining no inverse of A) in analogy to (11) reads~V = V �B�1(AV �MV�): (14)Therein the pre
onditioner B�1 is assumed to satisfy (7).On
e again, we have the two representations (13) and (14) of the pre
onditioned subspa
eiteration. The �rst representation (13) shows its relation to inverse iteration (INVIT). Insertingthe best possible pre
onditioner, i.e. B = A, in Equation (13) one obtains~V = A�1MV�: (15)Then ~V is the result of inverse iteration (for the generalized eigenvalue problem) if applied tothe subspa
e spanned by the 
olumns of V . The 
onvergen
e of inverse iteration in analyzedfor instan
e in [7, 23℄. In the standard representation of INVIT the (nonsingular) diagonalmatrix � in (15) equals the identity matrix. But � has no in
uen
e on the Ritz values andRitz ve
tors of ~V , sin
e it only gives rise to a 
olumn s
aling of ~V . Approximate solutionof (15) for ~V immediately leads to Equation (13), whi
h simply is the 
orresponding errorpropagation equation. Therefore, ~V in (13) equals the result of inverse iteration A�1MV�plus a perturbation term given by the produ
t of the error propagation matrix I �B�1A andthe 
orre
tion V � A�1MV� made by inverse iteration. The 
orre
tion term V � A�1MV�tends to the zero matrix if the 
olumn spa
e of V 
onverges to an invariant subspa
e ofeigenve
tors of (A;M).On
e 
omputed ~V by (14), the Rayleigh{Ritz pro
edure is applied to determine theapproximate eigenve
tors and eigenvalues. The Ritz ve
tors v0i, i = 1; : : : ; s, of the 
olumnspa
e span( ~V ) de�ne the 
olumns of V 0, and the 
orresponding Ritz values �0i are thediagonal elements of the matrix �0. Thus the pre
onditioned subspa
e eigensolver iteratesthe transformation V; � �! V 0; �0.Di�erent attempts have been made to analyze (14) in its simpli�ed form with M = I .Bramble et al. [5℄ have analyzed Equation (14) and have shown 
onvergen
e under restri
tiveassumptions on the initial spa
e; but the algorithm was not related to inverse iteration. Foran analysis of some simpli�ed pre
onditioned subspa
e s
hemes see [10, 11, 9, 16℄. In all theseworks the 
onvergen
e theory is based on a dire
t analysis of Equation (14), whi
h is 
ommonlyrelated with pre
onditioned gradient methods for the eigenvalue problem, see Se
tion 2.2.In 
ontrast to that, the analysis in [20℄, for M = I , atta
ks Equation (13) and derivessharp 
onvergen
e estimates for the Ritz values. The 
onvergen
e theory is mainly based onan analysis of the geometry underlying pre
onditioned inverse iteration, see [21, 22℄ for theanalysis of the pre
onditioned ve
tor (s = 1) s
heme. In [20℄, treating the subspa
e algorithm(14), it is shown that the 
onvergen
e estimates for ea
h Ritz value are the same as thosewhi
h have been derived for the Rayleigh quotient of the ve
tor s
heme (11) in [22℄.In the next theorem the results given in [20℄ are extended to the generalized matrix eigenvalueproblem (2) emerging from the �nite element dis
retization, while the operator representation



6 K. NEYMEYRin [5, 20, 21, 22℄ only treats the standard eigenvalue problem. Theorem 2.1 does not 
onsist ina trivial substitution of the Eu
lidean inner produ
t by the one indu
ed by M , but re
urs onthe error propagation equation underlying (13).Theorem 2.1. Consider the generalized eigenproblem for (A;M) given by (2) with theeigenvalues 0 < �1 � �2 � : : : � �n of arbitrary multipli
ity. The pre
onditioner B�1 isassumed to satisfy (7) for a 
 2 [0; 1).Let an s{dimensional subspa
e V be de�ned by (12). Then the Ritz values �1; : : : ; �s 
onvergelinearly to eigenvalues of (A;M). For ea
h of these �i it holds that:If �i 2 [�ki ; �ki+1) for some index ki, then either �0i < �ki (unless �0i < �i+1) or it holds that�ki;ki+1(�0i) � �
 + (1� 
) �ki�ki+1�2�ki;ki+1(�i); i = 1; : : : ; s; (16)where �ki;ki+1(�) = �� �ki�ki+1 � �:Proof. First we show that full rank of V in (13) implies full rank of ~V . For any nonzero y 2 Rswe have k ~V ykA = kA�1MV�y + (I �B�1A)(V �A�1MV�)ykA� kA�1MV�ykA � k(I �B�1A)(V �A�1MV�)kA� kA�1MV�ykA � k(V �A�1MV�)ykA= kA�1MV�yk2A � k(V �A�1MV�)yk2AkA�1MV�ykA + k(V �A�1MV�)ykA= kV yk2AkA�1MV�ykA + k(V �A�1MV�)ykA > 0;where we have used the relation V TA(V �A�1MV�) = 0 in the last step. Sin
e rank(V ) = s,we have kV ykA > 0 and kA�1MV�ykA > 0 so that rank( ~V ) = s.To show (16), a Cholesky de
omposition of M = CCT is used to transform (2) to thestandard eigenvalue problem for �A = C�1AC�T . Then (2) with yi = CTxi reads�Ayi = �iyi; i = 1; : : : ; n; (17)while the Rayleigh quotient (3) transforms to� �A(y) = (y; �Ay)(y; y) :The s
heme (13) with �V = CTV readsCT ~V = �A�1 �V�+ (I � �B�1 �A)( �V � �A�1 �V�); (18)where the symmetri
, positive de�nite �B�1 = CTB�1C ful�llskI � �B�1 �Ak �A � 
;in the operator norm indu
ed by �A. Hen
e Equation (18) is nothing else than thepre
onditioned eigensolver for standard eigenvalue problem (17) and Theorem 3.3 in [20℄ aswell as Theorem 1 in [17℄ 
an be applied. Finally, the Ritz values of CT ~V with respe
t to �Aequal those of ~V with respe
t to (A;M); this proves the bound (16) for the Ritz values.



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 7Theorem 2.1 guarantees at least linear 
onvergen
e for ea
h Ritz values toward a smallereigenvalue. We emphasize that the 
onvergen
e estimates for �i only depend on the nearesteigenvalues �ki and �ki+1 en
losing �i. Hen
e, the 
onvergen
e estimate is independent ofthe mesh size and so of the number of the unknowns. This guarantees a grid independent
onvergen
e as known from pre
onditioned solvers for the linear systems arising fromdis
retizing boundary value problems.2.5. More general pre
onditionersIn pra
ti
e, assumption (7) on the quality of the pre
onditioner is often satis�ed for s
aledpre
onditioners only. Whenever we assume (6) to hold for positive 
onstants 
0 and 
1, wehave as the smallest bound for the s
aled pre
onditioner #B�1kI � #B�1AkA � 
1 � 
0
0 + 
1 =: 
 < 1; (19)with the s
aling 
onstant # = 2=(
0 + 
1). In general # is not available 
omputationally. Butthe situation is not hopeless sin
e optimal subspa
e approximations 
an be determined from[V;B�1(AV �MV�)℄ 2 Rn�2sby means of the Rayleigh{Ritz method where the results do not depend on the s
aling of thepre
onditioner. This iteration is 
alled pre
onditioned steepest des
ent and is guaranteed to
onverge faster than PINVIT (the faster de
rease of the Rayleigh quotients is assured by theCourant{Fis
her prin
iple). 3. A posteriori error estimationA posteriori error estimation for the given eigenproblem is based on an estimate from abovefor the deviation of ea
h Ritz value from the nearest eigenvalue of problem (2). This estimatederives from evaluating a suitable norm of the gradient of the Rayleigh quotient within thegiven Ritz ve
tor. The estimator is easily 
omputable from known quantities. In 
ontrast toa posteriori error estimation for the numeri
al solution of boundary value problems, our aposteriori error estimator works on a subspa
e of eigenve
tor approximations. This gives usthe freedom to 
ouple error estimation to a spe
i�
 single eigenfun
tion or to a subset ofeigenfun
tions in order to 
ompute these with an in
reased a

ura
y. We will dis
uss somestrategies in Se
tion 5.We do not try to bound the error of the Ritz ve
tors. Su
h an error, for instan
e, 
an bemeasured by the 
anoni
al angles en
losed by the subspa
e of exa
t eigenfun
tions and itsnumeri
al approximation. The main diÆ
ulty with su
h a bound is to be seen in the fa
t thatthe a
ute angles en
losed by the eigenve
tor approximations generated by PINVIT and theeigenspa
e to the smallest eigenvalues are not monotone de
reasing, see Se
. 3.2 in [22℄.Given a 
ertain Ritz pair (vi; �i), we employ a Taylor expansion of the Rayleigh quotient inorder to estimate the distan
e of �i to the nearest eigenvalue of A. If ~vi is the i{th 
olumn of~V , as de�ned by (14), then the �rst order Taylor expansion of (3) reads�(~vi) = �(vi � di) = �(vi)� (r�(vi); di) +O(kdik2):



8 K. NEYMEYRSin
e r�(v) = 2(v;Mv) (Av � �(v)Mv), we 
an rewrite the negative �rst order term Fi in theform Fi := (r�(vi); di) = 2(vi;Mvi) (ri; di) = 2kdik2B : (20)Therein, ri = Avi � �(vi)Mvi denotes the residual of vi. To 
ompute Fi only a single dotprodu
t is required, sin
e the residual ri and the pre
onditioned residual di are known while
omputing B�1(AV �MV�) and ~V by Equation (14). Therefore, Fi 
an serve as a simpleestimate for �(vi) � �(~vi), i.e. the de
rease of the Rayleigh quotient in the i{th 
olumn of Vfor a step of (14).In Theorem 3.1 we show that Fi 
an even serve as an error estimator for the larger distan
eof the Ritz value �i to the nearest eigenvalue of A.Theorem 3.1. Let vi be the i{th Ritz ve
tor, i.e. the i{th 
olumn of V , and let m be the indexso that �i 2 [�m; �m+1). Then it holds that(�i � �m)(�m+1 � �i) � �m�m+12�i(1� 
)Fi � �m+12(1� 
)Fi; (21)where the error estimator Fi is given by Equation (20).Proof. It is �rst shown that for any v, kvkM = 1, with � = �(v) 2 [�m; �m+1) andr = Av � �Mv the following Temple{type inequality holds (see D'yakonov and Orekhov [12℄)�(� � �m)(�m+1 � �)�m�m+1 � krk2A�1 : (22)To prove (22) one starts from a basi
 inequality(�m � �j)(�m+1 � �j) � 0; j = 1; : : : ; n;whi
h leads to 1�j � �m + �m+1 � �j�m�m+1 :Expanding v in eigenve
tors of A, that is v = Pnj=1 
jxj , one dire
tly obtains kvk2M =Pnj=1 
2j = 1 and thusnXj=1 1�j 
2j � nXj=1 �m + �m+1 � �j�i�i+1 
2j = �m + �m+1 � ��m�m+1 ;or �0�� nXj=1 
2j�j � 11A � �(� � �m)(�m+1 � �)�m�m+1 :Showing that the left hand side of the last inequality is equal to krk2A�1 
ompletes the proofof (22). Inserting vi and �i one obtains by using (7)�i(�i � �m)(�m+1 � �i)�m�m+1 � krik2A�1 � 11� 
 krik2B�1 = 11� 
 kdik2B :



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 9To form a judgment on the quality of the error estimator one has to distinguish between thein
uen
e of the pre
onditioner, whi
h is fully 
ontrolled by (7) and 
, and the error introdu
edby the inequality (22). Let us show that krkA�1 in Equation (22) is also bounded from above.By using Theorem 2.1 in [22℄ (the proof is based on the Lagrange multiplier method) one hasfor � 2 [�m; �m+1) Bm;m+1(�) � krkA�1 � B1;n(�);where B2i;j(�) := �(�=�i � 1)(1� �=�j). It is easy to show that the bound Bi;j is attained ifthe ve
tor v, whose Rayleigh quotient is assumed to be equal to � and whose residual is givenby r = Av � �v, is spanned only by eigenve
tors to the eigenvalues �i and �j . But in generalthere is a wide 
orridor between the 
urves Bi;i+1(�) and B1;n(�). We obtain for � 2 [�i; �j ℄���iB2i;j(�) < 0; ���jB2i;j(�) > 0;and lim�n!1B21;n(�) = �2=�1 � 1 so that B1;n appears as an extremely bad bound. ButB1;n is too pessimisti
, sin
e the more the a
tual iterate v approximates some eigenve
tor ofA (whi
h will be the 
ase, sooner or later), the better the in
uen
e of eigenve
tors to other(larger) eigenvalues vanishes and the error estimator (21) will provide a more reliable bound,
f. the numeri
al results in Se
tion 5.4. The iteration and dis
retization error estimatorsTo 
onstru
t an adaptive multigrid algorithm for the approximate solution of the ellipti
eigenproblem (1) one requires both an iteration error estimator as well as a dis
retizationerror estimator. While the iteration error estimator should provide pra
ti
al 
riteria forthe termination of the pre
onditioned eigensolver (with respe
t to the a
tual grid), thedis
retization error estimator should make available lo
al error indi
ators to 
ontrol the meshre�nement.The iteration error estimator is simply based on the evaluation of Fi within the given �niteelement spa
e S, in whi
h the matrix eigenvalue problem (2) is the dis
retization of the givenellipti
 eigenproblem. Let us now assume that the Ritz value �i is of suÆ
ient quality so that�i 2 [�i; �i+1). Then Equation (21) for m = i reads2�i(1� 
)�i�i+1 (�i � �i)(�i+1 � �i) � Fi: (23)We emphasize that the error estimator Fi results from known quantities (the residual and thepre
onditioned residual) by evaluating a simple dot produ
t. Aside from the 
onstants on theleft hand side of (23) a small estimate Fi indi
ates that a
tual Ritz value �i is near to theeigenvalue �i.To estimate the dis
retization error we introdu
e an enlarged subspa
eQ � S of higher order�nite elements. The eigenvalues and the Ritz values in these spa
es are denoted as follows:The eigenvalues ��i are those of the 
ontinuous problem (1) and the eigenvalues �i;S (�i;Q) arede�ned by (2) if the 
ontinuous eigenproblem is dis
retized with respe
t to S (Q). Finally, theRitz values �i are approximations of the eigenvalues �i;S . Then we have��i � �i;Q � �i;S � �i;
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e S � Q � H(
).In the following we use a saturation assumption in terms of eigenvalues�i;Q � ��i � �(�i;S � ��i) (24)with a positive � < 1. The Courant{Fis
her prin
iples guarantee that � � 1 and the theorypresented in Chapter 6 of [24℄ shows that � is bounded away from 1 if we assume, for instan
e,S (Q) to 
onsist of pie
ewise linear (quadrati
) �nite elements and if the triangulation is �neenough. The next lemma (
f. Lemma 2.1 in [4℄) shows that the total error �i � ��i and thedis
retization error �i;S � ��i 
an be estimated from above by �i � �i;Q. To estimate the latterdi�eren
e we later apply our error estimator.Lemma 4.1. The saturation assumption (24) is equivalent to ea
h of the following inequalities:�i � ��i � 11� � (�i � �i;Q); (25)�i;S � ��i � 11� � (�i;S � �i;Q): (26)Proof. First we show that the saturation assumption implies (25) and (26). Sin
e�i � �i;Q = �i � ��i + ��i � �i;Q � �i � ��i � �(�i;S � ��i) � (1� �)(�i � ��i);we have (25). For �i = �i;S the inequality (26) follows immediately. To see that the saturationassumption follows from (26) we 
al
ulate�i;S � ��i = �i;Q � ��i + �i;S � �i;Q � �i;Q � ��i + (1� �)(�i;S � ��i)from whi
h we obtain (24).To be 
on
rete we assume S to 
onsist of pie
ewise linear �nite elements and realize thedis
retization error estimator in Q, whi
h is assumed to be the �nite element spa
e of pie
ewisequadrati
 elements. A hierar
hi
al de
omposition of Q is given by the dire
t sumQ = S � V ; (27)where the pie
ewise quadrati
 fun
tions in V vanish on all nodes de�ned by the grid asso
iatedwith S. For a more detailed des
ription of Q see [8℄.To estimate the dis
retization error within a given Ritz pair (vi; �i) we write down thedis
retization of the 
ontinuous eigenvalue problem (1) with respe
t to the hierar
hi
alextension (27). We obtain, instead of (2), the following generalized eigenvalue problem forthe 2� 2 blo
k matri
es AQ and MQ� A ASVAVS AQQ �xi;Q = �i;Q � M MSVMVS MQQ �xi;Q:The (1; 1) submatri
es A (M) of AQ (MQ) 
oin
ide with those in (2). We further de�nevi;Q = (vi; 0)T , whose residual ri;Q in Q is given byri;Q = AQvi;Q � �iMQvi;Q = � Avi � �iMviAVSvi � �iMVSvi � (28)
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 positive de�nite pre
onditioner BQ to be given so that the spe
tralradius of I �B�1Q AQ, in analogy to (7), is equal to 
Q < 1. Applying the error estimator (21)within Q results in Fi;Q := 2kdi;Qk2BQ ; (29)where di;Q = (BQ)�1ri;Q is the pre
onditioned residual.If �i 2 [�i;Q; �i+1;Q), then the error estimator Fi;Q allows to estimate the term �i � �i;Q onthe right hand side of (25) and thus impli
itly the dis
retization error in the form2�i(1� 
Q)�i;Q�i+1;Q (�i � �i;Q)(�i+1;Q � �i) � Fi;Q: (30)5. Numeri
al resultsThe a posteriori error estimators have been integrated within an adaptive multigrid algorithmto solve ellipti
 eigenproblems [19℄. Starting with an initial 
oarse grid, the subspa
e variant ofPINVIT is applied on ea
h grid of a sequen
e of adaptively generated re�ned grids. Espe
iallyfor only weakly di�erentiable eigenfun
tions we obtain a highly nonuniform grid, maximallyre�ned in the 
riti
al region near the origin, exemplifying the eÆ
a
y of the adaptive s
heme.The iteration error estimator is used to de�ne a stopping 
riterion for (14) (with respe
tto the a
tual subspa
e) and the dis
retization error estimator is employed to derive amesh re�nement strategy. The 
entral idea, whi
h motivates the derivation of the stopping
ondition, is that the iteration error and the dis
retization error on the sequen
e of adaptivelygenerated grids should be redu
ed in a balan
ed ratio, 
f. [8℄ who use this 
on
ept for thenumeri
al solution of boundary value problems. Su
h a balan
ing is reasonable, sin
e solvingthe eigenproblem on a given mesh with high a

ura
y is ine�e
tive if the dis
retization erroris still large. If on the other hand the iteration error with respe
t to the a
tual grid is large,then the lo
al error indi
ators, whi
h are responsible for the mesh re�nement, are expe
ted tobe of low a

ura
y. For the details of this implementation see the te
hni
al report [19℄. In [18℄the 
on
ept is applied to di�erential operators in the R3 .As a test problem we 
onsider the weak form of the Lapla
ian eigenproblem��u = �u;on the unit 
ir
le, 
entered at the origin, with a slit along the positive x axis. HomogeneousDiri
hlet boundary 
onditions are supposed on the boundary of the 
ir
le and on the top ofthe slit, while homogeneous Neumann boundary 
onditions are given on the bottom of the slit.The numeri
al results 
an be 
ompared with the exa
t eigenfun
tions and eigenvalues. Inpolar 
oordinates with � 2 [0; 2�) and r 2 [0; 1℄ these are given byuk;l(r; �) = 
 sin(��)J�(!�;lr); �k;l = (!�;l)2;where � = 14 + k2 and for integer separation 
onstants k � 0 and l � 1. Therein, J�(r) isthe Bessel fun
tion of �rst kind and fra
tional order �, see [1℄, whose positive zeros !�;l areassumed to in
rease with l. Table I gives the 8 smallest eigenvalues. We further note that fork = 0 and k = 1 the derivative ��rJ� is unbounded at r = 0 so that the eigenfun
tions u0;land u1;l are only in H1(
).



12 K. NEYMEYRk l �k;l ��rJ� unbounded1. 0 1 7.73333 +2. 1 1 12.18714 +3. 2 1 17.35078 -4. 3 1 23.19939 -5. 4 1 29.71453 -6. 0 2 34.88252 +7. 5 1 36.88189 -8. 1 2 44.25756 +Table I. Separation 
onstants k, l and eigenvalues rounded to �ve digits after the period. For k = 0; 1the derivative of the Bessel fun
tion J(�; r) is unbounded at the origin.P = f1g P = f3g P = f1; 2; 3gi �i �i �i;Q �i �i �i;Q �i �i �i;Q1 7.777 7.769 7.744 8.219 8.116 7.934 7.796 7.786 7.7512 12.244 12.243 12.197 12.244 12.237 12.194 12.230 12.230 12.1923 17.462 17.460 17.365 17.422 17.418 17.363 17.422 17.422 17.359Table II. Final Ritz values �i in S and stationary values �i (�i;Q) in S (Q).All test 
al
ulations have been performed within an eight dimensional subspa
e (s = 8). Asa pre
onditioner the (s
aled) hierar
hi
al basis pre
onditioner is used, see Yserentant [26, 27℄.The spe
tral properties of BQ in Q are des
ribed in [8℄.Sin
e PINVIT is applied to an s dimensional subspa
e, the termination 
riterion withrespe
t to the a
tual grid as well as the grid re�nement strategy 
an be 
oupled to a 
ertainsubset P � f1; : : : ; sg 
ontaining indexes of 
riti
al eigenfun
tions of low regularity. Then theadaptive multigrid eigensolver should give best results for those eigenfun
tions whose indexesare 
ontained in P . To demonstrate the dependen
e of the generated grid on the index set P ,we make three di�erent 
hoi
es.1. P = f1g. To approximate u0;1 with an unbounded partial derivative at the origin ahighly non{uniform triangulation is expe
ted.2. P = f3g. The derivatives of u2;1 are bounded. Thus the triangulation will be moreuniform.3. P = f1; 2; 3g. The �nal triangulation should re
e
t the properties of both 
ases above.The in
uen
e of the se
ond eigenfun
tion u1;1(r; �) at the 
riti
al origin is insigni�
antsin
e u1;0(r; �) is the steeper fun
tion in r in the neighborhood of the origin.In Figure 1 the initial triangulation 
onsisting of 40 triangles is shown where on only 10 innernodes the fun
tion is not �xed to zero by the boundary 
onditions. Additionally, 
ontour plotsof the �rst three eigenfun
tions are given. Table II lists the three smallest �nal Ritz values�i on the �nal grid for whi
h the subspa
e eigensolver is stopped. Table II also 
ontains theeigenvalue approximations �i (�i;Q) for whi
h the iteration is stationary with respe
t to the�nal �nite element spa
e of pie
ewise linear (quadrati
) �nite elements. Figure 2 shows the
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Figure 1. ab
d a) Initial triangulation of the unit 
ir
le 
onsisting of 40 triangles and 10 inner nodes.b){d) Contour plots of u0;1, u1;1, u2;1.

Figure 2. ab
d Final triangulations. a) P = f1g, 2385 nodes. b) Zoom of [�2�10; 2�10℄2 in (a). 
)P = f3g, 2374 nodes. d) P = f1; 2; 3g, 2381 nodes.



14 K. NEYMEYR# nodes # inner nodes tmin tmaxP = f1g 2385 2237 3 16P = f3g 2374 2215 4 6P = f1; 2; 3g 2381 2201 4 14Table III. Number of nodes of the �nal triangulation and number of nodes that are not on the Diri
hletboundary. tmin is the number of uniform grid re�nements with respe
t to the initial triangulation andtmax the maximal depth of the triangulation.�nal triangulations for ea
h 
hoi
e of P . The 
orresponding grid parameters are listed in TableIII. Highly non{uniform triangulations with a �nal depth of 16 (14) are gained for the �rst(third) 
hoi
e of P giving eviden
e for the eÆ
a
y of the adaptive s
heme. As anti
ipated, thegrid is maximally re�ned near to the origin.Comparing the values �1 in Table II one observes that for P = f1g this stationary value isabout 4% smaller than for P = f3g and only about 0:2% smaller than for P = f1; 2; 3g. Similarresults for �3 and P = f3g in 
omparison with the other 
hoi
es of P are gained. Apparently,P = fig is the best strategy to generate a grid on whi
h �i a
hieves its minimum. The �nal Ritzvalues �i are approximations of the eigenvalues of the 
ontinuous problem within the 1 per
entrange. The remaining error is mainly 
aused by the dis
retization error. The 
al
ulation withP = f1; 2; 3g leads to a grid whi
h allows 
omparatively good approximations of all threeeigenvalues. The depth of the �nal triangulation is 
lose to the depth in the 
ase P = f1g.The a posteriori error estimators in the 
ase P = f1g are now studied in more detail. Figure3 do
uments the iteration error of the Ritz values by plotting �(k)i � �i, for i = 1; 2; 3, forthe 
omputations des
ribed above. The Ritz values �(k)i are those whi
h are generated bythe PINVIT subspa
e s
heme within the adaptive pro
ess. The iteration error of the thirdeigenvalue is the largest one (despite of the �nal grid). Ea
h stair in the plot 
orresponds tothe appearan
e of a new grid and on ea
h grid the iteration error is redu
ed by the rate of ageometri
 progression, see [20℄.The redu
tion of the dis
retization error is illustrated by plotting the di�eren
e �(k)1 � �1;Q(solid line) in Figure 4. Additionally, the dotted line in Figure 4 represents the error estimatorFi;Q, see Equation (29), whi
h roughly behaves like the error in Q but tends to underestimatethe real error. To make sure that the error of all iterates is measured with the same norm, allRitz ve
tors generated in the 
ourse of the adaptive pro
ess have been prolongated to the �nalgrid. After this, error estimation is applied to all iterates. But note that this is an arti�
ialsituation sin
e in the adaptive pro
ess the error estimator is only 
alled with respe
t to thea
tual �nite element spa
e and will then provide more a

urate estimates.ACKNOWLEDGEMENTThe author is grateful to P. Leinen and W. Lemba
h for providing several parts of the adaptiveeigensolver 
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