
A posteriori error estimation for ellipti eigenproblemsKlaus NeymeyrMathematishes Institut der Universit�at T�ubingen, Auf der Morgenstelle 10,72076 T�ubingen, Germany; neymeyr�na.uni-tuebingen.deSUMMARYAn a posteriori error estimator is presented for a subspae implementation of Preonditioned InverseIteration, whih derives from the well{known Inverse Iteration in suh a way that the assoiatedsystem of linear equations is solved approximately by using a preonditioner. The error estimator isintegrated in an adaptive multigrid algorithm to ompute approximations of a modest number of thesmallest eigenvalues together with the eigenfuntions of an ellipti di�erential operator.Error estimation is applied both within the atual �nite element spae (in order to estimatethe iteration error) as well as in its hierarhial re�nement of higher order elements (to estimatethe disretization error) whih gives rise to a balaned redution of the iteration error and of thedisretization error in the adaptive multigrid algorithm.key words: Symmetri eigenvalue problem; Preonditioning; Multigrid; A posteriori errorestimation. 1. IntrodutionUsing adaptive disretization methods for the numerial solution of partial di�erentialequations arising from problems in physis and engineering, numerial approximation withina presribed tolerane an often be gained with only a small portion of the work whih isneessary when uniform grid re�nement is employed. Whereas a priori error estimation givesasymptoti rates of onvergene as the mesh parameter h tends to zero, one needs for adaptivemethods a posteriori error estimators to provide pratial riteria to ontrol the adaptive meshre�nement and to onstrut a stopping ondition for the iterative solver.Adaptive disretization methods and a posteriori error estimators an nevertheless be appliedto onstrut eÆient solvers for the eigenproblem. The struture of the eigenvalue problemleads to a modi�ed approah and to some extensions, e.g. for treating invariant subspaes ofeigenvetors in an appropriate manner.A reent survey on a posteriori error estimators has been given by Verf�urth [25℄ disussing themost frequently used error estimators whih have been developed in the last two deades. Forexample, in the software pakage PLTMG [2℄ for solving ellipti partial di�erential equations,the triangle oriented error estimator of Bank and Weiser [3℄ is implemented, whih is basedon the solution of small Neumann problems on eah triangle. For edge oriented loal errorestimation, see for instane Deuhard, Leinen and Yserentant [8℄ and Zienkiewiz et. al. [28℄.



2 K. NEYMEYRFor the generalized eigenvalue problem Friberg [13℄ onstruted an a posteriori error estimatordesribing the relative hange in an eigenvalue for a hierarhial re�nement. The error estimatorpresented here is based on a similar quantity, namely the �rst order term of a Taylor expansionof the Rayleigh quotient around the atual iterate.This work presents the mathematial onept underlying the a posteriori error estimationfor a subspae implementation of Preonditioned Inverse Iteration on a sequene of adaptivelygenerated grids. Preonditioned inverse iteration (PINVIT) derives from inverse iteration(INVIT or also alled inverse power method) in a way that the assoiated system of linearequations is solved approximately by using a preonditioner [21, 22℄. The extension ofpreonditioned inverse iteration to a subspae algorithm is analyzed in [20℄.The remaining part of this paper is organized as follows: In Setion 2 we introduepreonditioned inverse iteration and show how to transfer the onvergene theory to thegeneralized eigenvalue problem, whih appears neessary sine the results in [21, 20℄ are onlygiven for the standard eigenvalue problem. In Setion 3 an error estimator for eigenvalueproblems is presented. In Setion 4 the iteration error estimator as well as the disretizationerror estimator are derived, whih prepare the ground for the onstrution for an adaptivemultigrid solver. Finally, the results of some numerial experiments are given in Setion 5.2. A preonditioned eigensolver for the generalized eigenvalue problem2.1. The eigenproblem and its disretizationLet 
 � Rd , d = 1; 2; 3, be a onneted, bounded, polygonal domain with mixed homogeneousDirihlet and Neumann boundary onditions and onsider the eigenvalue problema(u; v) = �� (u; v); v 2 H(
); (1)where H(
) onsists of all funtions of a ertain Hilbert spae V vanishing on the Dirihletboundary. The bilinear form a(�; �) orresponds to a self{adjoint, oerive, ellipti di�erentialoperator and (�; �) is the inner produt in V . E.g. for the Laplaian, V is a subspae ofthe Sobolev spae H1;2(
) and (�; �) is the usual L2(
) inner produt. Here, our aim is todetermine approximations of a modest number of the smallest eigenvalues �� together with itseigenfuntions u.Therefore, we onsider a �nite element disretization of (1) whih leads to the followinggeneralized matrix eigenvalue problemAxi = �iMxi; i = 1; : : : ; n; (2)where the �nite element spae is assumed to have the dimension n. Usually, A 2 Rn�n isalled the sti�ness matrix and M 2 Rn�n the mass matrix. Both matries are assumed tobe symmetri and positive de�nite. Moreover, they are typially very large and sparse. Forsimple test problems the dimension n may exeed 106 even on standard present{day personalomputers. Obviously, these matries annot be stored in the omputer as full matries butprogram routines are provided to ompute the matrix{vetor produts Ax andMx. Moreover,A typially has a large spetral ondition number; e.g. for the Laplaian the ondition numberbehaves like h�d in the mesh parameter h.The eigenvalues of the generalized matrix eigenvalue problem (A;M) may have arbitrarymultipliity and are put in an order so that 0 < �1 � : : : � �n. The orresponding eigenvetors



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 3xi are assumed to satisfy kxik2M = (xi;Mxi) = 1, where (�; �) denotes the Eulidean norm.Then the Rayleigh quotient assoiated with the generalized matrix eigenvalue problem is givenby �(x) = (x;Ax)(x;Mx) : (3)2.2. Gradient type solvers for the eigenproblemOur goal is a partial solution of the eigenvalue problem (2), i.e. we are interested in omputingsome of the smallest eigenvalues together with their invariant subspae. The large number ofunknowns rule out the use of any eigensolvers that rely on dense matries or their fatorizationslike the QR or Jaobi method. We annot even fator A or M by the LU or Choleskydeomposition beause of a lak of the neessary omputer storage. In other words, we arefored to onstrut an iterative eigensolver in a so{alled matrix{free environment.The most simple eigensolver satisfying the mentioned restrition is based on the idea toreformulate the eigenvalue problem (2) as an optimization problem for the Rayleigh quotient(3). Following the idea of Kantorovih [15℄ as well as Hestenes and Karush [14℄ one an orreta given iterate x in the diretion of the negative gradient of the Rayleigh quotient in order toderease the Rayleigh quotient of the new iterate.Sine the gradient of the Rayleigh quotient (3) for a given iterate x is given byr�(x) = 2(x;Mx) (Ax� �(x)Mx); (4)the so{alled gradient method for the eigenproblem has the formx0 := x� !(Ax� �(x)Mx): (5)The new iterate x0 has a dereased Rayleigh quotient for a proper hoie of the salingparameter !. In the best ase ! is determined in a way that the Rayleigh quotient of the newiterate x0 takes its minimum. For the latter hoie the sheme is alled the steepest desentmethod.As long as the residual vetor Ax��(x)Mx is nonzero, whih means that x is no eigenvetorof A, the Rayleigh quotients of the gradient method (steepest desent) form a stritly monotonedereasing sequene of real numbers, whih (usually) tends to the smallest eigenvalue �1.Then the iterates themselves onverge to an assoiated eigenvetor. Unfortunately the gradientsheme (5) is known to su�er from poor onvergene for ill{onditioned A [6℄. Preonditioningan provide some ure.2.3. Preonditioned gradient eigensolversApplying preonditioning to the gradient eigensolver (5) an improve its onvergeneproperties. For the best multigrid preonditioners one an even guarantee grid{independentonvergene and thus (quasi{) optimal omputational omplexity for the iterative solver. Thepreonditioner B�1 (whih is also often alled an approximate inverse of A) is assumed tosatisfy the estimate Æ0(x;Bx) � (x;Ax) � Æ1(x;Bx); x 2 Rn ; (6)



4 K. NEYMEYRwhere Æ0 and Æ1 are positive onstants. Here, we prefer the more onvenient assumption of aproperly saled preonditioner B�1 for whihkI �B�1AkA � : (7)Therein  is a positive onstant,  2 [0; 1), and k � kA denotes the operator norm indued byA, f. also Setion 2.5.Now preonditioned gradient eigensolvers an be derived by premultiplying the residual in(5) by the preonditioner. This leads to the shemex0 := x� !B�1(Ax� �(x)Mx): (8)The assumption (7) of the properly saled preonditioner B�1 allows us from now on to set! = 1. There is a vast literature on the onvergene theory of (8), predominantly written byRussian authors; but the estimates ontained in these works are only asymptotially sharp.See D'yakonov [9℄ and Knyazev [16℄ for a review.A new approah to the onvergene analysis of (8) has been presented in [21, 22℄, where alsosharp and non{asymptoti onvergene estimates have been derived. The idea of this analysisis based on an alternative derivation of (8) by means of approximatively solving the system oflinear equations assoiated with inverse iteration, i.e. for a given iterate x the new iterate x̂ isthe solution of the linear system Ax̂ = �Mx; (9)for some � 6= 0. First observe that the hoie of � is immaterial, sine inverse iteration isinvariant with respet to the saling of the iterates. Setting � = �(x) paves the way forapplying preonditioning to solve (9), sine then the residual of (9) vanishes for x onvergingto an eigenvetor. Writing down the error propagation equation for the approximate solutionof (9) for this hoie of � we obtainx0 � �(x)A�1Mx = (I �B�1A)(x � �(x)A�1Mx): (10)In this equation the initial error x � �(x)A�1Mx is premultiplied by the error propagationmatrix resulting in the �nal error x0 � �(x)A�1Mx, where x0 approximates x̂. Now the keypoint is that (10) an be rewritten in the simple form (ontaining no inverse of A)x0 = x�B�1(Ax� �(x)Mx): (11)To sum up, we have derived the iteration (8) by approximating inverse iteration. For thisreason we also all (11) the sheme of preonditioned inverse iteration (PINVIT). The newapproah to its onvergene analysis in [21, 22℄ exploits the fat that (10) has a simple geometriinterpretation, i.e. the set of all the possible new iterates (under the assumption (7)) is a ballwhose enter �(x)A�1Mx is de�ned by the result of inverse iteration. This geometri viewturns out as a valuable tool for the analysis.2.4. Subspae implementation of preonditioned inverse iterationIn the following we introdue the subspae implementation of preonditioned inverse iteration.Therefore, let an s{dimensional subspae of the Rn be spanned by the vetors vi, for i =1; : : : ; s, whih are assumed to be the Ritz vetors of (A;M). Then for V = [v1; : : : ; vs℄ 2 Rn�sit holds V TAV = � = diag(�1; : : : ; �s) and V TMV = I; (12)



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 5where I 2 Rs�s is the identity matrix. The Ritz vetors are assumed to be in an order so thatthe positive Ritz values �i are inreasing with i.In order to generalize preonditioned inverse iteration to a subspae method, whih isto determine an invariant subspae of eigenvetors orresponding to some of the smallesteigenvalues, we rewrite (10) in matrix terms~V = A�1MV�+ (I �B�1A)(V �A�1MV�): (13)Its simpli�ed representation (ontaining no inverse of A) in analogy to (11) reads~V = V �B�1(AV �MV�): (14)Therein the preonditioner B�1 is assumed to satisfy (7).One again, we have the two representations (13) and (14) of the preonditioned subspaeiteration. The �rst representation (13) shows its relation to inverse iteration (INVIT). Insertingthe best possible preonditioner, i.e. B = A, in Equation (13) one obtains~V = A�1MV�: (15)Then ~V is the result of inverse iteration (for the generalized eigenvalue problem) if applied tothe subspae spanned by the olumns of V . The onvergene of inverse iteration in analyzedfor instane in [7, 23℄. In the standard representation of INVIT the (nonsingular) diagonalmatrix � in (15) equals the identity matrix. But � has no inuene on the Ritz values andRitz vetors of ~V , sine it only gives rise to a olumn saling of ~V . Approximate solutionof (15) for ~V immediately leads to Equation (13), whih simply is the orresponding errorpropagation equation. Therefore, ~V in (13) equals the result of inverse iteration A�1MV�plus a perturbation term given by the produt of the error propagation matrix I �B�1A andthe orretion V � A�1MV� made by inverse iteration. The orretion term V � A�1MV�tends to the zero matrix if the olumn spae of V onverges to an invariant subspae ofeigenvetors of (A;M).One omputed ~V by (14), the Rayleigh{Ritz proedure is applied to determine theapproximate eigenvetors and eigenvalues. The Ritz vetors v0i, i = 1; : : : ; s, of the olumnspae span( ~V ) de�ne the olumns of V 0, and the orresponding Ritz values �0i are thediagonal elements of the matrix �0. Thus the preonditioned subspae eigensolver iteratesthe transformation V; � �! V 0; �0.Di�erent attempts have been made to analyze (14) in its simpli�ed form with M = I .Bramble et al. [5℄ have analyzed Equation (14) and have shown onvergene under restritiveassumptions on the initial spae; but the algorithm was not related to inverse iteration. Foran analysis of some simpli�ed preonditioned subspae shemes see [10, 11, 9, 16℄. In all theseworks the onvergene theory is based on a diret analysis of Equation (14), whih is ommonlyrelated with preonditioned gradient methods for the eigenvalue problem, see Setion 2.2.In ontrast to that, the analysis in [20℄, for M = I , attaks Equation (13) and derivessharp onvergene estimates for the Ritz values. The onvergene theory is mainly based onan analysis of the geometry underlying preonditioned inverse iteration, see [21, 22℄ for theanalysis of the preonditioned vetor (s = 1) sheme. In [20℄, treating the subspae algorithm(14), it is shown that the onvergene estimates for eah Ritz value are the same as thosewhih have been derived for the Rayleigh quotient of the vetor sheme (11) in [22℄.In the next theorem the results given in [20℄ are extended to the generalized matrix eigenvalueproblem (2) emerging from the �nite element disretization, while the operator representation



6 K. NEYMEYRin [5, 20, 21, 22℄ only treats the standard eigenvalue problem. Theorem 2.1 does not onsist ina trivial substitution of the Eulidean inner produt by the one indued by M , but reurs onthe error propagation equation underlying (13).Theorem 2.1. Consider the generalized eigenproblem for (A;M) given by (2) with theeigenvalues 0 < �1 � �2 � : : : � �n of arbitrary multipliity. The preonditioner B�1 isassumed to satisfy (7) for a  2 [0; 1).Let an s{dimensional subspae V be de�ned by (12). Then the Ritz values �1; : : : ; �s onvergelinearly to eigenvalues of (A;M). For eah of these �i it holds that:If �i 2 [�ki ; �ki+1) for some index ki, then either �0i < �ki (unless �0i < �i+1) or it holds that�ki;ki+1(�0i) � � + (1� ) �ki�ki+1�2�ki;ki+1(�i); i = 1; : : : ; s; (16)where �ki;ki+1(�) = �� �ki�ki+1 � �:Proof. First we show that full rank of V in (13) implies full rank of ~V . For any nonzero y 2 Rswe have k ~V ykA = kA�1MV�y + (I �B�1A)(V �A�1MV�)ykA� kA�1MV�ykA � k(I �B�1A)(V �A�1MV�)kA� kA�1MV�ykA � k(V �A�1MV�)ykA= kA�1MV�yk2A � k(V �A�1MV�)yk2AkA�1MV�ykA + k(V �A�1MV�)ykA= kV yk2AkA�1MV�ykA + k(V �A�1MV�)ykA > 0;where we have used the relation V TA(V �A�1MV�) = 0 in the last step. Sine rank(V ) = s,we have kV ykA > 0 and kA�1MV�ykA > 0 so that rank( ~V ) = s.To show (16), a Cholesky deomposition of M = CCT is used to transform (2) to thestandard eigenvalue problem for �A = C�1AC�T . Then (2) with yi = CTxi reads�Ayi = �iyi; i = 1; : : : ; n; (17)while the Rayleigh quotient (3) transforms to� �A(y) = (y; �Ay)(y; y) :The sheme (13) with �V = CTV readsCT ~V = �A�1 �V�+ (I � �B�1 �A)( �V � �A�1 �V�); (18)where the symmetri, positive de�nite �B�1 = CTB�1C ful�llskI � �B�1 �Ak �A � ;in the operator norm indued by �A. Hene Equation (18) is nothing else than thepreonditioned eigensolver for standard eigenvalue problem (17) and Theorem 3.3 in [20℄ aswell as Theorem 1 in [17℄ an be applied. Finally, the Ritz values of CT ~V with respet to �Aequal those of ~V with respet to (A;M); this proves the bound (16) for the Ritz values.



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 7Theorem 2.1 guarantees at least linear onvergene for eah Ritz values toward a smallereigenvalue. We emphasize that the onvergene estimates for �i only depend on the nearesteigenvalues �ki and �ki+1 enlosing �i. Hene, the onvergene estimate is independent ofthe mesh size and so of the number of the unknowns. This guarantees a grid independentonvergene as known from preonditioned solvers for the linear systems arising fromdisretizing boundary value problems.2.5. More general preonditionersIn pratie, assumption (7) on the quality of the preonditioner is often satis�ed for saledpreonditioners only. Whenever we assume (6) to hold for positive onstants 0 and 1, wehave as the smallest bound for the saled preonditioner #B�1kI � #B�1AkA � 1 � 00 + 1 =:  < 1; (19)with the saling onstant # = 2=(0 + 1). In general # is not available omputationally. Butthe situation is not hopeless sine optimal subspae approximations an be determined from[V;B�1(AV �MV�)℄ 2 Rn�2sby means of the Rayleigh{Ritz method where the results do not depend on the saling of thepreonditioner. This iteration is alled preonditioned steepest desent and is guaranteed toonverge faster than PINVIT (the faster derease of the Rayleigh quotients is assured by theCourant{Fisher priniple). 3. A posteriori error estimationA posteriori error estimation for the given eigenproblem is based on an estimate from abovefor the deviation of eah Ritz value from the nearest eigenvalue of problem (2). This estimatederives from evaluating a suitable norm of the gradient of the Rayleigh quotient within thegiven Ritz vetor. The estimator is easily omputable from known quantities. In ontrast toa posteriori error estimation for the numerial solution of boundary value problems, our aposteriori error estimator works on a subspae of eigenvetor approximations. This gives usthe freedom to ouple error estimation to a spei� single eigenfuntion or to a subset ofeigenfuntions in order to ompute these with an inreased auray. We will disuss somestrategies in Setion 5.We do not try to bound the error of the Ritz vetors. Suh an error, for instane, an bemeasured by the anonial angles enlosed by the subspae of exat eigenfuntions and itsnumerial approximation. The main diÆulty with suh a bound is to be seen in the fat thatthe aute angles enlosed by the eigenvetor approximations generated by PINVIT and theeigenspae to the smallest eigenvalues are not monotone dereasing, see Se. 3.2 in [22℄.Given a ertain Ritz pair (vi; �i), we employ a Taylor expansion of the Rayleigh quotient inorder to estimate the distane of �i to the nearest eigenvalue of A. If ~vi is the i{th olumn of~V , as de�ned by (14), then the �rst order Taylor expansion of (3) reads�(~vi) = �(vi � di) = �(vi)� (r�(vi); di) +O(kdik2):



8 K. NEYMEYRSine r�(v) = 2(v;Mv) (Av � �(v)Mv), we an rewrite the negative �rst order term Fi in theform Fi := (r�(vi); di) = 2(vi;Mvi) (ri; di) = 2kdik2B : (20)Therein, ri = Avi � �(vi)Mvi denotes the residual of vi. To ompute Fi only a single dotprodut is required, sine the residual ri and the preonditioned residual di are known whileomputing B�1(AV �MV�) and ~V by Equation (14). Therefore, Fi an serve as a simpleestimate for �(vi) � �(~vi), i.e. the derease of the Rayleigh quotient in the i{th olumn of Vfor a step of (14).In Theorem 3.1 we show that Fi an even serve as an error estimator for the larger distaneof the Ritz value �i to the nearest eigenvalue of A.Theorem 3.1. Let vi be the i{th Ritz vetor, i.e. the i{th olumn of V , and let m be the indexso that �i 2 [�m; �m+1). Then it holds that(�i � �m)(�m+1 � �i) � �m�m+12�i(1� )Fi � �m+12(1� )Fi; (21)where the error estimator Fi is given by Equation (20).Proof. It is �rst shown that for any v, kvkM = 1, with � = �(v) 2 [�m; �m+1) andr = Av � �Mv the following Temple{type inequality holds (see D'yakonov and Orekhov [12℄)�(� � �m)(�m+1 � �)�m�m+1 � krk2A�1 : (22)To prove (22) one starts from a basi inequality(�m � �j)(�m+1 � �j) � 0; j = 1; : : : ; n;whih leads to 1�j � �m + �m+1 � �j�m�m+1 :Expanding v in eigenvetors of A, that is v = Pnj=1 jxj , one diretly obtains kvk2M =Pnj=1 2j = 1 and thusnXj=1 1�j 2j � nXj=1 �m + �m+1 � �j�i�i+1 2j = �m + �m+1 � ��m�m+1 ;or �0�� nXj=1 2j�j � 11A � �(� � �m)(�m+1 � �)�m�m+1 :Showing that the left hand side of the last inequality is equal to krk2A�1 ompletes the proofof (22). Inserting vi and �i one obtains by using (7)�i(�i � �m)(�m+1 � �i)�m�m+1 � krik2A�1 � 11�  krik2B�1 = 11�  kdik2B :



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 9To form a judgment on the quality of the error estimator one has to distinguish between theinuene of the preonditioner, whih is fully ontrolled by (7) and , and the error introduedby the inequality (22). Let us show that krkA�1 in Equation (22) is also bounded from above.By using Theorem 2.1 in [22℄ (the proof is based on the Lagrange multiplier method) one hasfor � 2 [�m; �m+1) Bm;m+1(�) � krkA�1 � B1;n(�);where B2i;j(�) := �(�=�i � 1)(1� �=�j). It is easy to show that the bound Bi;j is attained ifthe vetor v, whose Rayleigh quotient is assumed to be equal to � and whose residual is givenby r = Av � �v, is spanned only by eigenvetors to the eigenvalues �i and �j . But in generalthere is a wide orridor between the urves Bi;i+1(�) and B1;n(�). We obtain for � 2 [�i; �j ℄���iB2i;j(�) < 0; ���jB2i;j(�) > 0;and lim�n!1B21;n(�) = �2=�1 � 1 so that B1;n appears as an extremely bad bound. ButB1;n is too pessimisti, sine the more the atual iterate v approximates some eigenvetor ofA (whih will be the ase, sooner or later), the better the inuene of eigenvetors to other(larger) eigenvalues vanishes and the error estimator (21) will provide a more reliable bound,f. the numerial results in Setion 5.4. The iteration and disretization error estimatorsTo onstrut an adaptive multigrid algorithm for the approximate solution of the elliptieigenproblem (1) one requires both an iteration error estimator as well as a disretizationerror estimator. While the iteration error estimator should provide pratial riteria forthe termination of the preonditioned eigensolver (with respet to the atual grid), thedisretization error estimator should make available loal error indiators to ontrol the meshre�nement.The iteration error estimator is simply based on the evaluation of Fi within the given �niteelement spae S, in whih the matrix eigenvalue problem (2) is the disretization of the givenellipti eigenproblem. Let us now assume that the Ritz value �i is of suÆient quality so that�i 2 [�i; �i+1). Then Equation (21) for m = i reads2�i(1� )�i�i+1 (�i � �i)(�i+1 � �i) � Fi: (23)We emphasize that the error estimator Fi results from known quantities (the residual and thepreonditioned residual) by evaluating a simple dot produt. Aside from the onstants on theleft hand side of (23) a small estimate Fi indiates that atual Ritz value �i is near to theeigenvalue �i.To estimate the disretization error we introdue an enlarged subspaeQ � S of higher order�nite elements. The eigenvalues and the Ritz values in these spaes are denoted as follows:The eigenvalues ��i are those of the ontinuous problem (1) and the eigenvalues �i;S (�i;Q) arede�ned by (2) if the ontinuous eigenproblem is disretized with respet to S (Q). Finally, theRitz values �i are approximations of the eigenvalues �i;S . Then we have��i � �i;Q � �i;S � �i;



10 K. NEYMEYRsine S � Q � H(
).In the following we use a saturation assumption in terms of eigenvalues�i;Q � ��i � �(�i;S � ��i) (24)with a positive � < 1. The Courant{Fisher priniples guarantee that � � 1 and the theorypresented in Chapter 6 of [24℄ shows that � is bounded away from 1 if we assume, for instane,S (Q) to onsist of pieewise linear (quadrati) �nite elements and if the triangulation is �neenough. The next lemma (f. Lemma 2.1 in [4℄) shows that the total error �i � ��i and thedisretization error �i;S � ��i an be estimated from above by �i � �i;Q. To estimate the latterdi�erene we later apply our error estimator.Lemma 4.1. The saturation assumption (24) is equivalent to eah of the following inequalities:�i � ��i � 11� � (�i � �i;Q); (25)�i;S � ��i � 11� � (�i;S � �i;Q): (26)Proof. First we show that the saturation assumption implies (25) and (26). Sine�i � �i;Q = �i � ��i + ��i � �i;Q � �i � ��i � �(�i;S � ��i) � (1� �)(�i � ��i);we have (25). For �i = �i;S the inequality (26) follows immediately. To see that the saturationassumption follows from (26) we alulate�i;S � ��i = �i;Q � ��i + �i;S � �i;Q � �i;Q � ��i + (1� �)(�i;S � ��i)from whih we obtain (24).To be onrete we assume S to onsist of pieewise linear �nite elements and realize thedisretization error estimator in Q, whih is assumed to be the �nite element spae of pieewisequadrati elements. A hierarhial deomposition of Q is given by the diret sumQ = S � V ; (27)where the pieewise quadrati funtions in V vanish on all nodes de�ned by the grid assoiatedwith S. For a more detailed desription of Q see [8℄.To estimate the disretization error within a given Ritz pair (vi; �i) we write down thedisretization of the ontinuous eigenvalue problem (1) with respet to the hierarhialextension (27). We obtain, instead of (2), the following generalized eigenvalue problem forthe 2� 2 blok matries AQ and MQ� A ASVAVS AQQ �xi;Q = �i;Q � M MSVMVS MQQ �xi;Q:The (1; 1) submatries A (M) of AQ (MQ) oinide with those in (2). We further de�nevi;Q = (vi; 0)T , whose residual ri;Q in Q is given byri;Q = AQvi;Q � �iMQvi;Q = � Avi � �iMviAVSvi � �iMVSvi � (28)



A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC EIGENPROBLEMS 11Now assume a symmetri positive de�nite preonditioner BQ to be given so that the spetralradius of I �B�1Q AQ, in analogy to (7), is equal to Q < 1. Applying the error estimator (21)within Q results in Fi;Q := 2kdi;Qk2BQ ; (29)where di;Q = (BQ)�1ri;Q is the preonditioned residual.If �i 2 [�i;Q; �i+1;Q), then the error estimator Fi;Q allows to estimate the term �i � �i;Q onthe right hand side of (25) and thus impliitly the disretization error in the form2�i(1� Q)�i;Q�i+1;Q (�i � �i;Q)(�i+1;Q � �i) � Fi;Q: (30)5. Numerial resultsThe a posteriori error estimators have been integrated within an adaptive multigrid algorithmto solve ellipti eigenproblems [19℄. Starting with an initial oarse grid, the subspae variant ofPINVIT is applied on eah grid of a sequene of adaptively generated re�ned grids. Espeiallyfor only weakly di�erentiable eigenfuntions we obtain a highly nonuniform grid, maximallyre�ned in the ritial region near the origin, exemplifying the eÆay of the adaptive sheme.The iteration error estimator is used to de�ne a stopping riterion for (14) (with respetto the atual subspae) and the disretization error estimator is employed to derive amesh re�nement strategy. The entral idea, whih motivates the derivation of the stoppingondition, is that the iteration error and the disretization error on the sequene of adaptivelygenerated grids should be redued in a balaned ratio, f. [8℄ who use this onept for thenumerial solution of boundary value problems. Suh a balaning is reasonable, sine solvingthe eigenproblem on a given mesh with high auray is ine�etive if the disretization erroris still large. If on the other hand the iteration error with respet to the atual grid is large,then the loal error indiators, whih are responsible for the mesh re�nement, are expeted tobe of low auray. For the details of this implementation see the tehnial report [19℄. In [18℄the onept is applied to di�erential operators in the R3 .As a test problem we onsider the weak form of the Laplaian eigenproblem��u = �u;on the unit irle, entered at the origin, with a slit along the positive x axis. HomogeneousDirihlet boundary onditions are supposed on the boundary of the irle and on the top ofthe slit, while homogeneous Neumann boundary onditions are given on the bottom of the slit.The numerial results an be ompared with the exat eigenfuntions and eigenvalues. Inpolar oordinates with � 2 [0; 2�) and r 2 [0; 1℄ these are given byuk;l(r; �) =  sin(��)J�(!�;lr); �k;l = (!�;l)2;where � = 14 + k2 and for integer separation onstants k � 0 and l � 1. Therein, J�(r) isthe Bessel funtion of �rst kind and frational order �, see [1℄, whose positive zeros !�;l areassumed to inrease with l. Table I gives the 8 smallest eigenvalues. We further note that fork = 0 and k = 1 the derivative ��rJ� is unbounded at r = 0 so that the eigenfuntions u0;land u1;l are only in H1(
).



12 K. NEYMEYRk l �k;l ��rJ� unbounded1. 0 1 7.73333 +2. 1 1 12.18714 +3. 2 1 17.35078 -4. 3 1 23.19939 -5. 4 1 29.71453 -6. 0 2 34.88252 +7. 5 1 36.88189 -8. 1 2 44.25756 +Table I. Separation onstants k, l and eigenvalues rounded to �ve digits after the period. For k = 0; 1the derivative of the Bessel funtion J(�; r) is unbounded at the origin.P = f1g P = f3g P = f1; 2; 3gi �i �i �i;Q �i �i �i;Q �i �i �i;Q1 7.777 7.769 7.744 8.219 8.116 7.934 7.796 7.786 7.7512 12.244 12.243 12.197 12.244 12.237 12.194 12.230 12.230 12.1923 17.462 17.460 17.365 17.422 17.418 17.363 17.422 17.422 17.359Table II. Final Ritz values �i in S and stationary values �i (�i;Q) in S (Q).All test alulations have been performed within an eight dimensional subspae (s = 8). Asa preonditioner the (saled) hierarhial basis preonditioner is used, see Yserentant [26, 27℄.The spetral properties of BQ in Q are desribed in [8℄.Sine PINVIT is applied to an s dimensional subspae, the termination riterion withrespet to the atual grid as well as the grid re�nement strategy an be oupled to a ertainsubset P � f1; : : : ; sg ontaining indexes of ritial eigenfuntions of low regularity. Then theadaptive multigrid eigensolver should give best results for those eigenfuntions whose indexesare ontained in P . To demonstrate the dependene of the generated grid on the index set P ,we make three di�erent hoies.1. P = f1g. To approximate u0;1 with an unbounded partial derivative at the origin ahighly non{uniform triangulation is expeted.2. P = f3g. The derivatives of u2;1 are bounded. Thus the triangulation will be moreuniform.3. P = f1; 2; 3g. The �nal triangulation should reet the properties of both ases above.The inuene of the seond eigenfuntion u1;1(r; �) at the ritial origin is insigni�antsine u1;0(r; �) is the steeper funtion in r in the neighborhood of the origin.In Figure 1 the initial triangulation onsisting of 40 triangles is shown where on only 10 innernodes the funtion is not �xed to zero by the boundary onditions. Additionally, ontour plotsof the �rst three eigenfuntions are given. Table II lists the three smallest �nal Ritz values�i on the �nal grid for whih the subspae eigensolver is stopped. Table II also ontains theeigenvalue approximations �i (�i;Q) for whih the iteration is stationary with respet to the�nal �nite element spae of pieewise linear (quadrati) �nite elements. Figure 2 shows the
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Figure 1. abd a) Initial triangulation of the unit irle onsisting of 40 triangles and 10 inner nodes.b){d) Contour plots of u0;1, u1;1, u2;1.

Figure 2. abd Final triangulations. a) P = f1g, 2385 nodes. b) Zoom of [�2�10; 2�10℄2 in (a). )P = f3g, 2374 nodes. d) P = f1; 2; 3g, 2381 nodes.



14 K. NEYMEYR# nodes # inner nodes tmin tmaxP = f1g 2385 2237 3 16P = f3g 2374 2215 4 6P = f1; 2; 3g 2381 2201 4 14Table III. Number of nodes of the �nal triangulation and number of nodes that are not on the Dirihletboundary. tmin is the number of uniform grid re�nements with respet to the initial triangulation andtmax the maximal depth of the triangulation.�nal triangulations for eah hoie of P . The orresponding grid parameters are listed in TableIII. Highly non{uniform triangulations with a �nal depth of 16 (14) are gained for the �rst(third) hoie of P giving evidene for the eÆay of the adaptive sheme. As antiipated, thegrid is maximally re�ned near to the origin.Comparing the values �1 in Table II one observes that for P = f1g this stationary value isabout 4% smaller than for P = f3g and only about 0:2% smaller than for P = f1; 2; 3g. Similarresults for �3 and P = f3g in omparison with the other hoies of P are gained. Apparently,P = fig is the best strategy to generate a grid on whih �i ahieves its minimum. The �nal Ritzvalues �i are approximations of the eigenvalues of the ontinuous problem within the 1 perentrange. The remaining error is mainly aused by the disretization error. The alulation withP = f1; 2; 3g leads to a grid whih allows omparatively good approximations of all threeeigenvalues. The depth of the �nal triangulation is lose to the depth in the ase P = f1g.The a posteriori error estimators in the ase P = f1g are now studied in more detail. Figure3 douments the iteration error of the Ritz values by plotting �(k)i � �i, for i = 1; 2; 3, forthe omputations desribed above. The Ritz values �(k)i are those whih are generated bythe PINVIT subspae sheme within the adaptive proess. The iteration error of the thirdeigenvalue is the largest one (despite of the �nal grid). Eah stair in the plot orresponds tothe appearane of a new grid and on eah grid the iteration error is redued by the rate of ageometri progression, see [20℄.The redution of the disretization error is illustrated by plotting the di�erene �(k)1 � �1;Q(solid line) in Figure 4. Additionally, the dotted line in Figure 4 represents the error estimatorFi;Q, see Equation (29), whih roughly behaves like the error in Q but tends to underestimatethe real error. To make sure that the error of all iterates is measured with the same norm, allRitz vetors generated in the ourse of the adaptive proess have been prolongated to the �nalgrid. After this, error estimation is applied to all iterates. But note that this is an arti�ialsituation sine in the adaptive proess the error estimator is only alled with respet to theatual �nite element spae and will then provide more aurate estimates.ACKNOWLEDGEMENTThe author is grateful to P. Leinen and W. Lembah for providing several parts of the adaptiveeigensolver ode. REFERENCES
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Figure 3. Convergene of the eigenvalues �(k)i � �i for P = f1g. Absissa: Iteration number of (14).Ordinate: Solid line i = 1 solid line; broken line i = 2; dotted line i = 3.
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