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ABSTRACT. The discretization of eigenvalue problems for partial differential operators
is a major source of matrix eigenvalue problems having very large dimensions, but only
some of the smallest eigenvalues together with the eigenvectors are to be determined.
Preconditioned inverse iteration (a “matrix factorization–free” method) derives from the
well–known inverse iteration procedure in such a way that the associated system of linear
equations is solved approximately by using a (multigrid) preconditioner.

A new convergence analysis for preconditioned inverse iteration is presented. The
preconditioner is assumed to satisfy some bound for the spectral radius of the error prop-
agation matrix resulting in a simple geometric setup. In this first part the case of poorest
convergence depending on the choice of the preconditioner is analyzed. In the second
part the dependence on all initial vectors having a fixed Rayleigh quotient is considered.
The given theory provides sharp convergence estimates for the eigenvalue approximations
showing that multigrid eigenvalue/vector computations can be done with comparable effi-
ciency as known from multigrid methods for boundary value problems.

1. INTRODUCTION

The discretization of eigenvalue problems for partial differential operators leads to ma-
trix eigenvalue problems having large dimensions in practice, fairly often more than105
or 106. A finite element discretization, for instance, of an eigenvalue problem for a selfad-
joint and coercive elliptic partial differential operatorgives a generalized matrix eigenvalue
problem of the form Ax = �Mx;
whereA, M are symmetric and positive definite matrices.A is called the discretization
matrix andM is called the mass matrix. Typically, only a few of the smallest eigenvalues
together with its eigenvectors are to be determined. In applications these eigenvalues are
often the base frequencies of some vibrating mechanical structure, possibly of a turbine or
an aircraft represented by finite element models.

The numerical treatment of these eigenvalue problems requires appropriate algorithms,
since the matricesA andM are sparse with only a small, bounded number of nonzero
elements per row. Therefore, these matrices are not stored explicitly, but only routines are
provided to compute the matrix vector productsAx andMx. Classical methods for the
solution of the eigenvalue problem inasmuch they require any manipulation or factorization
ofA cannot be applied, since the computer storage for full matrices is not available. Hence,
theQR method is not applicable. Moreover, the Lanczos method turns out to converge
slowly since the condition number ofA increases for decreasing mesh sizeh; for a 2D
Laplacian on a uniform mesh the condition number behaves likeh�2. Finally, the Rayleigh
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quotient method with its tempting cubic convergence in the eigenvalue approximations
cannot be applied since the solution of equations within theshifted discretization matrix,
which is then an indefinite matrix, is a critical step [29, 30,33].

On the other hand, systems of linear equations within the discretization matrix can be
solved efficiently by using multigrid or domain decomposition methods [2, 4, 31, 34]. The
application of these methods can be represented by some approximate inverse, also called
preconditioner, of the system matrixA. Therefore, in order to solve our eigenvalue problem
we take up the well–known inverse iteration procedure and solve the associated system of
linear equations inA approximately by using a preconditioner.

To introduce inverse iteration and for the following analysis we restrict the eigenvalue
problem to the standard one, i.e. we setM = I , whereI denotes the identity matrix. This
assumption is nonrestrictive; the generalized eigenvalueproblem is treated in [21]. Inverse
iteration [5, 11, 12, 23] maps a given iteratex to the next iteratêx by solving the system
of linear equations Ax̂ = �x;(1.1)

with some subsequent normalization ofx̂. For our purposes we have slightly modified
the standard representation of inverse iteration in a way that an additional scaling constant� = �(x) appears on the right–hand side of (1.1). Therein�(x) denotes the Rayleigh
quotient �(x) = (x;Ax)(x; x)(1.2)

of the actual nonzero iteration vectorx. The constant� in Equation (1.1) has no effect
on the convergence properties of inverse iteration, but ensures stationarity (̂x = x) in
any eigenvector ofA. It is well known that inverse iteration converges to the smallest
eigenvalue�1 and to a corresponding eigenvector if the initial vector is not perpendicular
to the invariant subspace of eigenvectors belonging to�1 [23].

To solve Equation (1.1) approximately we apply a symmetric and positive definite pre-
conditionerB�1 for A which is assumed to satisfykI �B�1AkA � (1.3)

for some constant with 0 �  < 1. Therein,k � kA denotes the operator norm induced byA. The assumption (1.3) is typical for multigrid or domain decomposition preconditioners.
(E.g. for A being the discretization of the Laplacian, a standardV –cycle with Jacobi
smoothing leads to � 0:2.) The best preconditioners satisfy (1.3) with bounded away
from 1 independently on the mesh size or the number of unknowns [34]. We note, in case
of having a spectral equivalence1(x;Ax) � (x;Bx) � 2(x;Ax); for all x 6= 0; 1; 2 > 0;(1.4)

instead of (1.3), the following analysis is applicable to a scaled preconditioner [21].

The assumption (1.3) on the preconditionerB�1 expresses that the error propagation
matrixI �B�1A is a reducer: In terms of the error propagation equationx0 � �A�1x = (I �B�1A)(x� �A�1x);(1.5)I � B�1A being a reducer means that the initial errorx � �A�1x, i.e. the difference
of the vectorx and the exact solution�A�1x of (1.1), is reduced to the final errorx0 ��A�1x, wherex0 denotes the approximate solution of (1.1). In the case of thebest possible
preconditioner, i.e. = 0 orB = A, one has the maximal error reduction or, equivalently,
in one step the result of inverse iterationx0 = �A�1x.
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We rewrite the error propagation equation in the form (containing no inverse ofA)x0 = x�B�1(Ax� �x);(1.6)

and call the iterative schemepreconditioned inverse iterationor abbreviated PINVIT. To
iterate this scheme one has to provide routines computing matrix vector products withA andB�1. These matrices are neither stored explicitly nor modified.For this reason
PINVIT is a “matrix–free” method.

In this work we analyze the convergence behavior of preconditioned inverse iteration
using the simple constraint (1.3) on the quality of the preconditioner. Our central task is to
derive a sharp estimate� for the relative decrease of the Rayleigh quotient�(x0) towards
the next smaller eigenvalue�i in terms of eigenvalue approximations, as given by�(x0)� �i�� �i � � < 1:(1.7)

Therefore it is assumed that�i and�i+1 are the nearest eigenvalues ofA enclosing�,�i < � < �i+1. To derive the sharp bound� one determines the supremum of the
Rayleigh quotient�(x0) with respect to the choice of the preconditioner as well as onthe
choice ofx having the Rayleigh quotient�. The important result is that� only depends on
the two eigenvalues�i and�i+1 enclosing� as well as on and�, i.e.� = �(�i; �i+1; ; �):
This independence on all the other eigenvalues, and in particular the independence on the
largest eigenvalue ofA, qualifies PINVIT as an effective algorithm for grid eigenvalue
problems, since the convergence estimate� can be bounded away from 1 and does not de-
pend on the mesh size and hence the number of unknowns. Thus eigenvalue computations
with preconditioned inverse iteration can be done with an efficiency as known from multi-
grid methods for boundary value problems [21]. By using the estimate on the eigenvalue
approximations we can also determine a simple convergence estimate for the eigenvector
approximations.

As expressed by Equation (1.7), the Rayleigh quotients of the iterates of PINVIT form
a monotone decreasing sequence. For an initial vectorx with � = �(x) 2℄�i; �i+1[ the
Rayleigh quotients of the iterates at least convergelinearly down to�i by (1.7), but in
the case of a faster decrease of the Rayleigh quotient they may jump from the interval℄�i; �i+1[ to [�1; �i[. In principle, it cannot be said, when the Rayleigh quotients move
from the interval[�i; �i+1℄ to the next interval[�i�1; �i℄ of smaller eigenvalues, since
this depends on the actual choice of the preconditioner and on the (unknown) eigenvector
expansion of the actual iterate. But in any case it is guaranteed that PINVIT converges to
an eigenvector/value; usually as an effect of rounding errors to the smallest eigenvalue and
a corresponding eigenvector. The convergence properties of PINVIT, its interpretation and
how to define aconvergence ratefor PINVIT is discussed in detail in the introduction of
Part II.

We do not claim to introduce a new or better converging eigensolver, but we hope
that the analysis increases the understanding of what can beachieved with this form of
preconditioning for the eigenproblem. We note that the iterative eigensolver analyzed here
is in some sense the most simple one and that more refined preconditioning strategies
for iterative eigenvalue solvers are known [27, 28]. Nevertheless, our theoretical analysis
provides the basis for the convergence analysis of an analogous subspace iteration in [20],
where sharp convergence estimates for the Ritz values belonging to the actual subspace are
derived.
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Furthermore, we do not discuss the question on how to construct or select an appropriate
preconditioner for the PINVIT algorithm since this question is separated from our analysis
by inequality (1.3) and the constant. There is no need to construct special preconditioners
to solve our eigenvalue problem, since any (multigrid) preconditioner satisfying (1.3) or
(1.4) will work. For a discussion of more practical questions arising while constructing an
adaptivemultigrid subspace eigensolver, see [21].

We emphasize that the iteration (1.6) is by no means new. It isknown as a precondi-
tioned gradient method. This naming derives from the fact that the gradient of the Rayleigh
quotient is given by r�(x) = 2(x; x) (Ax� �(x)x):(1.8)

Hence one expects that the Rayleigh quotient of the iteratex0 withx0 = x� !(Ax� �(x)x)(1.9)

is decreased. The convergence depends on a proper choice of the scaling constant!. A vast
literature can be found on gradient methods for the eigenvalue problem, discussing differ-
ent scaling strategies, convergence properties, adoptionof the conjugate gradient method
[1, 8, 10, 17, 18, 25, 32]. Nevertheless, gradient methods suffer from their poor conver-
gence properties; for mesh eigenproblems the convergence rate converges to1 if the mesh
sizeh decreases to0, [22].

Preconditioning of gradient methods (by premultiplying the residual by a preconditioner
forA) leads to the iterative scheme (1.6) and results in substantially improved convergence
properties, see the discussion above. Preconditioned gradient methods for the eigenvalue
problem were first studied by Samokish [26] and later by Petryshyn [24]. Estimates on
the convergence rate were given by Godunov et. al. [9] and D’yakonov et. al. [7, 6]. See
Knyazev for a survey on preconditioned eigensolvers [13]. These preconditioned gradient
methods have been generalized to a subspace iteration [19, 16, 3]. Applying the analysis
of this work to the iterative subspace scheme of Bramble, Knyazev and Pasciak [3] one
can remove some restrictive assumptions and can derive sharp estimates for the Ritz values
[20].

This paper is organized as follows: In Section 2 we give a convenient representation
of PINVIT and present its simple geometry. In Section 3 the multiple eigenvalue case is
treated. In Section 4 a detailed analysis describing the points of suprema of the Rayleigh
quotient with respect to the choice of the preconditioner isgiven. The points of suprema
are characterized by a Lagrange multiplier ansatz based on constraints which derive from
the geometric description of PINVIT. We obtain the surprising fact that these suprema are
taken in points which can be represented by inverse iteration with apositiveshift if applied
to the given iterate. Finally Section 5 contains a mini–dimensional analysis of PINVIT
which leads to sharp convergence estimates inR2.

In Part II we derive sharp convergence estimates for PINVIT.Therefore we vary not
only the preconditioner but additionally the vectorx whose Rayleigh quotient is assumed
to have a fixed value. The analysis is based on the representation of the points of suprema
gained in this part. Finally, by using predominantly geometric methods, we derive sharp
convergence estimates for the Rayleigh quotient of the iterates. Additionally, we show that
the acute angle between the actual iteration vector (i.e. the eigenvector approximation) and
the invariant subspace to the smallest eigenvalue is not generally monotone decreasing in
the course of the iteration. Nevertheless, the convergenceof the eigenvector approxima-
tions results from the convergence of the eigenvalue approximations.
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FIGURE 1. The setE(x) with respect to thek � kA norm.

2. THE GEOMETRY OF PRECONDITIONED INVERSE ITERATION

Consider a symmetric positive definite matrixA 2 Rm�m with n different eigenvalues0 < �1 < �2 < : : : < �n and assume the multiplicity of thei–th eigenvalue to be denoted
bym(i) so thatm =Pni=1m(i).

Furthermore let preconditioned inverse iteration be givenbyx0 = x�B�1(Ax� �x);(2.1)

and assume that a symmetric and positive definite matrixB and a constant with 0 �  <1 are given so that kI �B�1AkA � (2.2)

holds.
Applying preconditioned inverse iteration (2.1) to a giveniteratex for all admissible

preconditioners satisfying (2.2) gives rise to the definition of the setE(x) which contains
all possible iteratesE(x) := f�A�1x+ (I �B�1A)(I � �A�1)x; kI �B�1AkA � g:(2.3)

In the following we analyze the extremal behavior of the Rayleigh quotient on the setE(x). The detailed analysis of this extremal behavior and its dependence onx finally
leads to the required convergence estimates for PINVIT.

Figure 1 illustrates the setE(x) with respect to the vector norm induced byA. The
next lemma provides some orthogonal decomposition and shows that the null vector is not
contained inE(x).
Lemma 2.1. For x 2 Rm n f0g holds

(1) (x; (I � �A�1)x)A = 0,
(2) k�A�1xk2A = kxk2A + k(I � �A�1)xk2A,
(3) 0 =2 E(x) for all  2 [0; 1℄.

Therein,k � kA and(�; �)A denote the norm and the inner product induced byA.

Proof. Properties (1) and (2) follow from(x; (I � �A�1)x)A = (x; x)A � �(x)(x;A�1x)A = 0:
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Using the triangle inequality, (2.2) and (2) give for nonzero xkx0kA = k�A�1x+ (I �B�1A)(I � �A�1)xkA� k�A�1xkA � k(I � �A�1)xkA= �k�A�1xkA + k(I � �A�1)xkA��1 kxk2A > 0:
In order to show thatE(x) is a ball with respect to thek � kA–norm (whose center is�A�1x and whose radius isk(I � �A�1)xkA) we construct a specific class of precondi-

tioners built from Householder reflections.

Lemma 2.2. Consider a Householder reflectionH = I � 2uuT for u 2 Rm, uTu = 1,
and let̂ 2 [0; 1[. Then B̂�1 = A�1 + ̂A�1=2HA�1=2(2.4)

is symmetric and positive definite andkI � B̂�1AkA = ̂:
Proof. Symmetry ofB̂ follows from the definition. For any nonzerox 2 Rm and withy = A�1=2x follows(x; B̂�1x) = (x;A�1x) + ̂(x;A�1=2HA�1=2x) = (y; y) + ̂(y;Hy)� (y; y)� ̂jyj jHyj = (1� ̂)jyj2 > 0
which shows that̂B is positive definite. Furthermore it holds that (j�j denotes the Euclidean
norm) k(I � B̂�1A)xkA = ̂kA�1=2HA1=2xkA = ̂jHA1=2xj = ̂kxkA:
Using these preconditionerŝB one obtains the required characterization ofE(x).
Lemma 2.3. E(x) is a ball with respect to thek�kA–norm with center�A�1x and radiusk(I � �A�1)xkA, i.e.E(x) = f�A�1x+ y; y 2 Rm; kykA � k(I � �A�1)xkAg:
Proof. By definition (2.3) obviouslyE(x) is a subset of the ball. To show the opposite
inclusion consider a point�A�1x+ y in the ball. Then determinê with 0 � ̂ �  fromkykA = ̂k(I � �A�1)xkA:
Moreover, a Householder reflectionH can be determined which mapŝA1=2(I ��A�1)x
to�A1=2y so that �A1=2y = ̂HA1=2(I � �A�1)x:
We conclude that�A�1x+ y 2 E(x) sincey = �̂A�1=2HA1=2(I � �A�1)x = (I � B̂�1A)(I � �A�1)x;
using a preconditioner̂B as considered in Lemma 2.

As a consequence of Lemma 2.3 preconditioners built from Householder reflections
generate the complete ballE(x). We thus restrict the analysis of PINVIT to this type of
preconditioners in order to simplify the iterative scheme and give its representation with
respect to the basis ofA–orthonormal eigenvectors ofA in the next lemma.
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Lemma 2.4. Preconditioned inverse iteration (2.1) with the preconditioner (2.4) takes
with respect to theA–orthonormal basis of eigenvectors ofA the form0 = ���1� ̂(I � 2vvT )(I � ���1);(2.5)

where and0 are the coefficient vectors within this basis ofx andx0, respectively. More-
over,� = diag(�1; : : : ; �n) 2 Rm�m, ̂ �  and v 2 Rm, jvj = 1. The Rayleigh
quotient of a nonzerod 2 Rm with respect to this basis is given by�(d) = (d; d)(d;��1d) :(2.6)

Proof. LetX be the orthogonal matrix containing in the columns the eigenvectors ofA so
thatXTAX = � andXTX = I . Then for the coefficient vector of x with respect to the
basis ofA–orthonormal eigenvectors ofA holdsx = X��1=2:(2.7)

From (2.1) and forB = B̂ by (2.4) we obtain0 = � �1=2XTB�1X�1=2(I � ���1) = ���1� ̂XTHX(I � ���1):(2.8)

Equations (2.5) follows since bothH andXTHX are Householder reflections. Evaluating
the Rayleigh quotient (1.2) ofX��1=2d results in (2.6).

In the sequel, the convergence analysis is represented withrespect to the–basis intro-
duced in Lemma (2.4). For the sake of convenience we defineE() to be the–basis
representation (the basis introduced in Lemma 2.4) ofE(x), i.e.E() := f�1=2XT z; z 2 E(x)g = f0 given by (2.5)g:(2.9)

We finally note that the maximal Rayleigh quotient onE() does not depend on the sign
of any component of, since a change of the sign of thek–th component of leads to
a reflection ofE() by a hyperplane orthogonal to thek–th unit vector through the ori-
gin. Furthermore, the Rayleigh quotient (2.6) is purely quadratic in the components of its
argument so that any sign dependence vanishes.

Therefore, we restrict the convergence analysis to non–negative coefficient vectors.
3. MULTIPLE EIGENVALUES

In this section we give a justification for restricting the further convergence analysis of
PINVIT to matrices with only simple eigenvalues. Now let us write the diagonal matrix�,
which contains the eigenvalues ofA, in the form� = diag(�1; : : : ; �1| {z }m(1) ; : : : ; �n; : : : ; �n| {z }m(n) ) 2 Rm�m:
In the same way letd = (d1;1; : : : ; d1;m(1); : : : ; dn;1; : : : ; dn;m(n))T for a coefficient
vectord 2 Rm, wheredi;j denotes thej–th component corresponding to thei–th eigen-
value of multiplicitym(i). Now consider the mappingP : Rm ! Rn which defines a
problem of smaller dimension with simple eigenvalues by condensing components belong-
ing to a multiple eigenvalue in a joint component.(Pd)ji = �di := (m(i)Xj=1 d2i;j)1=2:(3.1)
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The Rayleigh quotient in theRn with �� = diag(�1; �2; : : : ; �n) is denoted by��( �d) = ( �d; �d)( �d; ���1 �d) :
PINVIT for the reduced problem with� := P () reads�0 = ��(�)���1�� ̂ �H(I � ��(�)���1)�(3.2)

for arbitrary Householder reflections�H 2 Rn�n. Note that (3.2) defines a ballE(�) �Rn. The next lemma shows that the suprema in the case of simple eigenvalues domi-
nate those of the multiple eigenvalue case. To make the convergence analysis of PINVIT
complete, we show later in Section 3.3 of Part II that the sharp convergence estimates (as
derived for the case of simple eigenvalues) are also sharp for matrices with eigenvalues of
arbitary multiplicity.

Lemma 3.1. Let  2 Rm, thensup�(E()) � sup ��(E(�)):
Proof. From definition (3.1) we obtain by direct calculation�(d) = ��(Pd) for anyd 2 Rm(3.3)

and thus� = �() = ��(P). Moreover,P maps the center ofE() to the center ofE(�), i.e.P (���1) = ����1�. Both balls have the same radius, sincej � ���1j =j�� ����1�j.
The mappingP preserves or reduces any distance, since for anyd; e 2 Rm (with�d = Pd and�e = Pe) we have by using the Cauchy–Schwarz inequalityje� dj2 = nXi=1 m(i)Xj=1 (ei;j � di;j)2� nXi=1 �e2i + nXi=1 �d2i � 2 nXi=10�(m(i)Xj=1 e2i;j)1=2(m(i)Xj=1 d2i;j)1=21A= j�e� �dj2 = jPe� Pdj2:

The combination of all these geometric properties gives that P (E()) is a subset ofE(�).
Hence sup ��(P (E())) � sup ��(E(�));
from which with (3.3) the proposition follows.

4. CHARACTERIZATION OF SUPREMA OF THERAYLEIGH QUOTIENT ON E()
By using the abbreviation (AC) we summarize three nonrestrictive assumptions on the

vector 2 Rn.

(AC)

8<: 1. jj2 = 1 ;
2.  is not equal to any unit vectorei, i = 1; : : : ; n,
3.  is componentwise nonnegative.

The first assumption is justified since PINVIT is homogeneouswith respect to scaling.
By the second assumption we exclude that PINVIT is stationary in an eigenvector. The
third assumption is justified in Section 2.
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4.1. Localization of points of suprema in E().
The gradient and the Hessian of the Rayleigh quotient are characterized by the following

lemma.

Lemma 4.1. For any nonzero 2 Rn the Rayleigh quotient (2.6) fulfills:

(a) r�() = 2(;��1)(I � ���1).
(b) r�() = 0 if and only if = �ei, 1 � i � n, for some nonzero� 2 R.
(c) The HessianH() of (2.6) is given byH() = 2(;��1)2 �(I � ���1)(;��1)(4.1) �2(��1)[(I � ���1)℄T � 2[(I � ���1)℄(��1)T � :

Proof. (a) and (c) follow from (2.6) by direct computation. Furthermore, all eigenvalues
are simple so that (b) results.

The next lemma shows that all points of suprema of the Rayleigh quotient onE(),
which represent the case of poorest convergence of PINVIT, are located on its surface or
more precise on the surface of the circular coneC() enclosingE(). The coneC()
is defined by C() := f�d; d 2 E(); � > 0g:(4.2)

Since the Rayleigh quotient (2.6) is invariant with respectto nonzero scaling of its argu-
ment, the suprema with respect toE() andC() coincide.

Lemma 4.2. Let (AC) be fulfilled and letw 2 arg sup�(E()). Thenw 2 �E(),
i.e. the boundary ofE().
Proof. Letw 2 arg sup�(E()) and assumew in the interior ofE(). Thenr�(w) =0 and thusw = �ei for a nonzero� by Lemma 4.1. We first assumei = n and derive a
contradiction: The angle of opening� of the circular coneC1() is given byos� = (; ���1)jjj���1j = 1j���1j :
Furthermore, the acute angle� enclosed by���1 andw = �en readsos� = ���1n nj���1j :
Sincejj = 1 by (AC), we have���1n n < 1 and so� < �. Hence,�en =2 C1() and thus�en =2 E(). In the remaining cases,1 � i � n � 1, the Hessian (4.1) in the stationary
points�ei is a diagonal matrixH(�ei) = 2�i�2 (I � �i��1);
which has at least one positive eigenvalue2�i�2 (1� �i�n ) > 0, so thatw = �ei is not a point
of a supremum.

The fact that any point of a supremum is located on the boundary of E() leads to
some orthogonal decomposition characterizing these points.
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Theorem 4.3. Let  satisfy (AC), 2 [0; 1[ andw 2 arg sup�(E()). Then(a) (w;w � ���1) = 0;(4.3) (b) jwj2 + jw � ���1j2 = j���1j2;(4.4) () jw � ���1j = j(I � ���1)j;(4.5) (d) jwj > jj:(4.6)

Proof. Assume(w;w � ���1) 6= 0, then�w (with � = (w;���1)(w;w) 6= 0) is an element of
the interior ofE() becausejw � ���1j2 � j�w � ���1j2 = 1jwj2 �jwj2 � (w; ���1)�2 > 0:
Moreover,�(�w) = �(w) holds, so that�w as a point of a supremum in the interior ofE() contradicts Lemma 4.2. The orthogonal decomposition (b) isa direct consequence
of (a). Equation (c) only expressesw 2 �E(), see Lemma 4.2. Finally,jwj2 = j���1j2 � 2j(I � ���1)j2 > j���1j2 � j(I � ���1)j2 = jj2:
4.2. Characterization of suprema by the method of Lagrange multipliers.

The next lemma explicitly describes the points of suprema byusing the method of La-
grange multipliers.

Lemma 4.4. Let  satisfy (AC), and assumew 2 arg sup�(E()). Then there are con-
stants�; � 2 R, so that 2(��1 + �+ �)w = ����1:(4.7)

Proof. By (4.4) and (4.5) the left–hand sidejwj2 ofjwj2 = j���1j2 � 2j(I � ���1)j2
has a fixed value for given and. Hence, the function�(w) := (w;��1w) takes its
extrema in the same arguments as the Rayleigh quotient�(w). The method of Lagrange
multipliers applied to�(w) with respect to the constraints (4.3) and (4.4) leads to a La-
grange functionL = L(w; �; �) with multipliers� and� in the formL = (w;��1w) + � �jwj2 + 2j(I � ���1)j2 � j���1j2�+ �(w;w � ���1):
The gradient ofL with respect tow readsrL = 2(��1 + �+ �)w � ����1:
FromrL = 0 the assertion follows.

The following analysis distinguishes the cases� 6= 0 and� = 0. Next we treat� = 0.

Lemma 4.5. Let  satisfy (AC) and letw 2 arg sup�(E()). Assuming� = 0 in (4.7)
anyw has the form w = ���1k kek;
for somek with 1 < k < n and nonzerok. (ek denotes thek–th unit vector.)
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Proof. For� = 0 from (4.7) we have(��1 + �)w = 0:
By (4.6) the vectorw has at least one nonzero componentwk for 1 � k � n. Hence,� = �1=�k. All eigenvalues�i are simple, so thatw = �ek for nonzero�. From (4.3) we
obtain� = ���1k k. We also havek 6= 0 since otherwisew = 0.

The casesk = 1 andk = n are impossible: Fork = 1 a point of a supremum inw = ���11 1e1 contradicts�(���1) > �1 = �(w). Furthermore, the proof of Lemma
4.2 excludes fork = n a point of a supremum inw = ���1k nen.

Remark4.6. Assuming� = 0 in Lemma 4.5 leads to a maximum ofn� 2 candidates for
points of suprema of the Rayleigh quotient onE(). In the sequel we assume� 6= 0 and
derive a continuum of points of extrema depending on a real parameter. Later in Appendix
A of Part II we show that only these points are suprema and not the candidates obtained in
Lemma 4.5.

Lemma 4.7. Let  satisfy (AC),w 2 arg sup�(E()) and assume� 6= 0. Then for any
positive componentk > 0 of the nonnegative vector holdswk = ��2(1 + �k(�+ �)) k > 0:(4.8)

Furthermore, ifk = 0 thenwk = 0 for k = 1; : : : ; n� 1.

Proof. If �k 6= 0, then��1k + � + � andwk are nonzero by (4.7) from which the form
of wk follows. If wk < 0, then define�w to be equal tow but with a positive sign of thek–th component. A comparison of the distances ofw and �w to the center���1 of the
ballE() showsjw � ���1j2 � j �w � ���1j2 = �4wk���1k k > 0;
so that�w is an element of the interior ofE(). Moreover,�(w) = �( �w), which contradicts
Lemma 4.2 since all points of absolute extrema are located onthe boundary ofE().
Hencewk > 0.

Next assumek; k0 = 0 andwk ; wk0 6= 0. Then (4.7) implies(��1k + �+ �)wk = 0 = (��1k0 + �+ �)wk0 ;
so that�k = �k0 , or equivalentlyk = k0. Hence there is at most one component for whichk = 0 andwk 6= 0.

Now l denote the smallest index so thatl > 0 and letl0 the largest index withl0 > 0.
We assumek = 0 andwk 6= 0 for l < k < l0. From (4.7) we deduce�+ � = �1=�k and
thus obtain forwl andwl0wl = ��k��k � �l l2 ; wl0 = ��k��k � �l0 l02 :
Sincel, l0 , wl andwl0 are positive and�l < �k < �l0 one obtains� = wll 2(�k � �l)�k� > 0; � = wl0l0 2(�k � �l0)�k� < 0;
which contradicts� 6= 0. Hencewk = 0.

Now consider the casem = 0 andwm 6= 0 with l0 < m < n. Define �w to be equal
to w with exception of the components with indexesm andn which have changed their
places. Sincem = n = 0 one hasj���1� wj = j���1� �wj;
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and thus�w 2 E() holds, but due to�m < �n we have�( �w) > �(w), which contradictsw 2 arg sup�(E()).
In the remaining casem < l, define�w to be equal tow except for them–th component

which is set equal to zero. Since1 = : : : = m = 0, and thus�(���1) > �m, we
conclude�(w) = sup�(E()) > �m. Hence, from�m < (w;w)(w;��1w) we obtain[(w;w) � w2m℄(w;��1w) > [(w;��1w)� w2m=�m℄(w;w)
and thus�( �w) > �(w). Additionally, �w 2 E() sincejw � ���1j2 � j �w � ���1j2 = w2m > 0
which contradictsw 2 arg sup�(E()).

In the next theorem we show that any point of a supremum has thevery simple repre-
sentation (4.9). So we obtain the somewhat surprising result that any point of a supremumw can be represented by application of inverse iteration witha shift to. A similar analysis
shows that such a result doesn’t hold in general for points ofinfima.

Theorem 4.8. On the assumptions of Lemma 4.7 anyw 2 arg sup�(E()) can be re-
presented as resulting from inverse iteration with a shift,i.e. there are real constants�,� 2 R such that w = �(�+�)�1:(4.9)

Proof. If  = 0 thenw = ���1, so that� = 0 and� = �. If  > 0 then due to Lemma
4.7 representation (4.9) may only be violated assumingn = 0 together withwn 6= 0.
From (4.7) we have� + � = �1=�n. Hence the remaining componentsw1; : : : ; wn�1
read wi = ��i2(1� �i��1n ) :(4.10)

Inserting (4.10) in (4.3) we obtain forjwj2jwj2 =Xi 6=n ��22i2�i(1� �i��1n ) > 0:
We have� = jwj2! with ! :=Pi 6=n �22i2�i(1��i��1n ) . Elimination of� in (4.10) results inwi = jwj2�i2!(1� �i��1n ) :
Then forwn holdsw2n = jwj2 �Xi 6=nw2i = jwj20�1� jwj2!2 Xi 6=n �22i4(1� �i��1n )21A :
We show next that !2 � jwj2Xi 6=n �22i4(1� �i��1n )2 ;(4.11)

which impliesw2n < 0 in contradiction tow2n > 0. Using (4.6) we see that from�20�Xi 6=n 2i�i(1� �i��1n )1A2 � 0�Xi 6=n 2i1AXi 6=n 2i(1� �i��1n )2 ;
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inequality (4.11) follows. The last inequality is equivalent toXi 6=n 2i 0�Xi 6=n 2i�i(�n � �i)1A2 � 0�Xi 6=n 2i�i1A2Xi 6=n 2i(�n � �i)2 :(4.12)

In Appendix A Lemma A.2 proves inequality (4.12) fork = n� 1 and� = �n.

4.3. Continuous curve of points of suprema.

In the previous section points of suprema are shown to be of the formw = �(�+�)�1
for real constants� and�. But so far the constants� and� are unknown. In this section
we determine the constant� and show that there is a unique� for each 2 [0; 1[.
Lemma 4.9. Let  2 Rn (with n � 2) satisfy (AC). Then the function� : [0;1[! R : � 7! �((� +�)�1)
is strictly monotone increasing in�. Therein�(�) denotes the Rayleigh quotient (2.6).
Moreover,�([0;1[) = [�(��1); �()[.
Proof. The diagonal matrix(�+�) is invertible for� � 0. Hence consider0 � �1 < �2
be given and definew(1) := (�1 + �)�1 andw(2) := (�2 + �)�1. Then we have fori = 1; : : : ; n w(1)i = �2 + �i�1 + �iw(2)i ;
wherein the sequence of positive coefficients�2+�1�1+�1 ; : : : ; �2+�n�1+�n is strictly monotone de-
creasing. Hence, due to Lemma A.1 the function� is strictly monotone increasing. Fur-
thermore, �(0) = �(��1) and lim�!1�((� +�)�1) = �():

By using Lemma (4.9) we see in the next theorem that the pointsof suprema represent
a continuous curve as a function of. The curve connects the center���1 of E() for = 0 and the vector for  = 1.

Theorem 4.10. Let  satisfy (AC). Then for each 2 [0; 1[ there are unique� � 0 and� > 0 with � = �(�) = (���1; (�+�)�1)((�+�)�1; (�+�)�1) ;
so thatw = �(�+�)�1 2 arg sup�(E()). Furthermore, thisw is the unique point of
a supremum onE().
Proof. Forw = �(� + �)�1 we have�=(� + �i) > 0 for any nonzero componenti
by Lemma 4.7. If� < 0, then� < ��l (wherel is the largest index so thatl > 0) and
the sequence ��+�i only for indexesi with i > 0 is strictly monotone increasing. Hence
from Lemma A.1 one obtains�(w) > �(). Such a result contradicts the convergence
estimates of D’yakonov and Orekhov [7], since adapting thatconvergence analysis to the
given assumption (1.3) and removing the scaling constant shows that the Rayleigh quotient
never increases while applying PINVIT to. Thus� > 0 and� > ���l, where�l is the
smallest index so that�l 6= 0. Since� : ℄� ��l;1[! R : � 7! �((� +�)�1)
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is strictly monotone increasing in� (confer Lemma 4.9) and since for� = 0 we have�(���1) = �(���1) = �(E0()) we conclude that only nonnegative� may represent
points of a suprema. Furthermore, the form of� > 0 directly follows from (4.3). Unique-
ness of the point of a supremum follows from the fact that�(�) for positive� is strictly
monotone increasing.

4.4. Reduction to a lower dimensional positive problem.

As a result of Theorem 4.10 the case of poorest convergence ofPINVIT can be rep-
resented by inverse iteration with a positive shift if applied to the given iterate. Hence
zero components of remain to be zero components ofw. For this reason the conver-
gence analysis of PINVIT can be restricted to the nonzero part of , i.e. to the contributing
eigenfunctions. The next lemma formally describes the reduction of the dimension and
provides the basis for the convergence analysis of PINVIT inPart II. There we show that
the Rayleigh quotient of the new iterate of PINVIT, under all 2 Rn with a fixed Rayleigh
quotient, takes its maximum in a vector with only two nonzerocomponents. Applying the
mini–dimensional analysis given in the next section one finally obtains sharp convergence
estimates.

For a given nonnegative 2 Rn let S be the operator which reduces the dimension
of a vectorv 2 Rn by eliminating all components ofv which are zero components of.
In the same wayS is applied to the diagonal matrix� leading to a diagonal matrix of
lower dimension. If, for example, = (1; 0; 0; 4)T , 1; 4 6= 0 thenS(v1; : : : ; v4)T =(v1; v4)T . The next lemma describes the geometry ofE(S).
Lemma 4.11. Let  2 Rn n f0g be a nonnegative vector andd := S, �d := S�. Then(a) � = �() = (; )(;��1) = (d; d)(d;��1d d) ;(b) S(���1) = ���1d S() = ���1d d;() S((I � ���1)) = (I � ���1d )d;(d) j(I � ���1)j = j(I � ���1d )dj;(e) S(E()) = E(d):
Hence the suprema of the Rayleigh quotient onE() and onE(S) coincide.

Proof. Properties (a)–(e) follow from the definition ofS. The rest follows from Theorem
4.10.

5. MINI –DIMENSIONAL CONVERGENCE ANALYSIS OFPINVIT

The objective of this section is to derive a sharp convergence estimate for preconditioned
inverse iteration in the case of the smallest nontrivial dimension of the eigenvalue problem,
that is in theR2. The following “mini–dimensional analysis” is a first step towards a
complete analysis of PINVIT. In Part II the convergence estimate given here turns out to
be fundamental for the analysis in theRn. The concept of a mini–dimensional analysis is
in some sense typical of the analysis of iterative eigensolvers. It is well–known that the
convergence rate of the power method (or inverse iteration)is determined by the two largest
(or by the two smallest) eigenvalues of the given matrix. A simple proof shows that the
convergence rate estimate takes its maximal value in exactly those vectors which belong
to that extremal eigenvalues. For the steepest ascent method (without preconditioning)
to determine the maximal eigenvalue of a given matrix, Knyazev and Skorokhodov [15]
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FIGURE 2. Geometric setup.

have also used a mini–dimensional technique to determine the convergence rate; for mini–
dimensional analysis of a steepest descent method for systems of linear equations see [14].

Theorem 5.1. Let  2 R2 with �1 < � = �() < �2 and jj = 1. Let 0 be defined by
(2.5) as the result of preconditioned inverse iteration with a preconditioner fulfilling (2.2)
for some 2 [0; 1[. Then �(0) � �12(�; )(5.1)

with �12(�; ) = �1�2�2 � �2��11+m2 :(5.2)

Thereinm is the slope of that straight line through the origin and throughE() which
maximizes the Rayleigh quotient. It holdsm = yl � rxxl + ry(5.3)

wherex, y, r andl are given by Equations (5.8)–(5.10).
One explicitly obtains�12 as a function of�, , �1 and�2 in the form�12(�; ) := ��1�2(�1 + �2 � �)2=�2(�2 � �)(� � �1)(��2 + ��1 � �21 � �22)�2p�1�2(�� �1)(�2 � �)(5.4) p�1�2 + (1� 2)(�� �1)(�2 � �)��(�1 + �2 � �)(��2 + ��1 � �21 � �1�2 � �22)� :

The estimate is sharp in a way that a preconditioner fulfilling (2.2) can be constructed such
that�(0) = �12(�; ).
Proof. Due to Theorem (4.3) our task is to determine the unique pointof intersection
of E() with a straight line through the origin which is tangential to E() and max-
imizes the Rayleigh quotient. The geometric setup of the problem is shown in Figure
2. Therefore, we first construct the points of intersection of the circleE() with radiusr := j(I ����1)j with a second circleK of radiusl :=px2 + y2 � r2 centered at the
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origin; therein the center ofE() is given by(y; x)T = ���1. The point of intersection
maximizing the Rayleigh quotient onE() has the form(�; �) = (pl2 � �2; xl2 + rylx2 + y2 ):(5.5)

Thus the Rayleigh quotient (2.6) of(�; �)T reads�12(�; ) = �((�; �)T ) = �2 + �2�2=�1 + �2=�2= �1�2(x2 + y2)2�2(x2 + y2)2 + (�1 � �2)(lx+ yr)2 ;(5.6)

from which we obtain (5.2) and (5.3).
The components of the positive vector 2 R2 are determined byjj = 1 and�() = �.

Hence, 1 = ��1(�2 � �)�(�2 � �1)�1=2 ; 2 = ��2(�� �1)�(�2 � �1)�1=2 :(5.7)

For the center ofE() one obtains(y; x)T = ���1(1; 2)T orx =s �(� � �1)�2(�2 � �1) ; y =s �(�2 � �)�1(�2 � �1) :(5.8)

Thus for the radiusr holdsr = j(I � ���1)j = s(�� �1)(�2 � �)�1�2 :(5.9)

Finally, we have l =s2(�1 � �)(�2 � �) + �(�1 + �2 � �)�1�2 :(5.10)

Inserting (5.8), (5.9) and (5.10) in (5.6) we obtain after some tedious but elementary sim-
plifications�12(�; ) in the form (5.4). Finally, by Lemma 2.2 a Householder reflection
exists, so that is mapped in the point of intersection0 = (�; �)T so that�(0) =�12(�; ):

We note that with respect to the initial basis the theorem says that forx 2 R2 (with�1 < � = �(x) < �2) and a preconditionerB�1 fulfilling (2.2) for the Rayleigh quotient
of the iteratex0 by (2.1) the sharp estimate�(x0) � �12(�; )
holds.

The function�12 has two representations: In Equation (5.2) the slopem is the decisive
factor. We have�12 = �2 for m = 0 and�12 ! �1 asm ! 1. To understand the
dependence ofm on one observes thatm = y=x for  = 0, which is the result of inverse
iteration, and thatm = 1=2 for  = 1, which corresponds to stationarity of PINVIT.
For  2℄0; 1[ the slopem depends on as described by Equations (5.3), (5.8)–(5.10).
The square roots inr andl are responsible for the somewhat unreadable representation of�12 by Equation (5.4), which results from (5.6) by inserting thegeometric quantities and
performing then extensive and tedious simplifications. It may be seen as a drawback of
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FIGURE 3. Comparison of convergence estimates. Abscissa:� 2[�1; �2℄ = [1; 3℄. Solid lines: Optimal convergence estimate�12(�; )
defined by (5.12). Broken lines: Estimate�̂(�; ) by Equation (5.11).

this analysis that (5.4) is a lengthy formula, since it is noteasy to see by direct calculation
that�12(�; ) < �, which implies convergence of PINVIT.

Therefore, we conclude this section with a comparison of theclassical convergence esti-
mate by D’yakonov and Orekhov [7] and the estimate (5.4) which turns out as a significant
improvement. By using the assumption (1.3) on the preconditioner and with a scaling con-
stant! = 11+ the analysis in [7] leads to the following estimate for the relative decrease
of �(x0) to �1 �(x0)� �1�� �1 � 1� 1�1+ �2���21 + 1�1+ (���1)(�2��)�1�2 =: �̂(; �):(5.11)

Now we compare the convergence estimate�̂(�; ) and the optimal estimate�12(�; )�12(�; ) := �12(�; )� �1�� �1(5.12)

with �12(�; ) derived in Theorem 5.1. As a concrete example we take�1 = 1 and�2 = 3.
In Figure 3 for = k10 , k = 0; : : : ; 10, the optimal estimate�12(�; ) is charted by solid
lines while�̂(�; ) is represented by broken lines. Anticipating the results ofPart II we
note that�12(�; ) as derived by the mini–dimensional analysis remains to be the optimal
estimate in theRn. For this reason we make a comparison with the estimate in [7]and not
with the more recent estimate (6.4) in [13]. The latter estimate does not only depend on
the two nearest eigenvalues enclosing the Rayleigh quotient of the given iterate but also on
the largest eigenvalue.

For  = 0 the estimate�12(�; 0) corresponds to inverse iteration and derives from
(5.12) and (5.4) for = 0.�12(�; 0) = �(�A�1x)� �1�(x) � �1 = �21�21 + (�2 � �)(�1 + �2) < 1:(5.13)
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In the limiting case = 1 the convergence estimate�12(�; 1) equals 1. Then PINVIT
is stationary. Let us compare the convergence estimates fortwo situations, explicitly. If� = 2:0 and = 0:1 one obtainŝ� � 0:571 and�12 � 0:244, while for � = 1:2 and = 0:2 holds�̂ � 0:556 and�12 � 0:223.

6. CONCLUSION

Application of PINVIT to a given initial vector with a preconditioner satisfying the
simple constraint (1.3) leads to a ball of iterates, where the center is defined by the result
of inverse iteration. The Rayleigh quotient on this ball takes its supremum in a vector
which can be represented as resulting from application of INVIT with a positive shift to
the initial vector. For the smallest nontrivial dimension asharp convergence estimate for
PINVIT has been given.

In Part II we analyze the dependence of these suprema on all those initial vectors whose
Rayleigh quotient has a fixed value. We finally derive sharp convergence estimates for
PINVIT by applying the results of the mini–dimensional analysis given here.

APPENDIX A. I NEQUALITIES ON WEIGHTED MEANS OF EIGENVALUES

We give two auxiliary lemmas used in Theorem 4.8 and in Section 4.3. The first lemma
investigates the effect of a monotonous weighting functionon the Rayleigh quotient.

Lemma A.1. Let  2 Rn and let the Rayleigh quotient�(�) be given by (2.6). Moreover,
defined 2 Rn by di := aii for i = 1; : : : ; n with a monotone increasing sequence of
positive numbers0 < a1 � a2 � : : : � an. Then for the Rayleigh quotients of andd
holds that �() � �(d):
Furthermore, if there are nonzeroi, j for i < j with ai < aj , then we even have�() <�(d). Analogously, if theai are monotone decreasing the Rayleigh quotient decreases.

Proof. If �() = �n then = �en (� 6= 0) and�() = �(d). Thus assume�() < �n.
Hence there is a uniquem, so that�m � �() < �m+1. Writing the Rayleigh quotient ofd in the form�(d) = Pni=1 d2iPni=1 d2i =�i = Pi<m a2ia2m 2i + 2m +Pi>m a2ia2m 2iPi<m a2ia2m 2i =�i + 2m=�m +Pi>m a2ia2m 2i =�i ;
we have

� aiam�2 � 1 for i = 1; : : : ;m�1 and
� aiam�2 � 1 for i = m+1; : : : ; n. By direct

calculation one can easily see that decreasing the absolutevalue of a componenti < m or
increasing the absolute value of a componenti > m increases the Rayleigh quotient. Thus�() � �(d). Finally, for nonzeroi andj the increase of the weighted mean is nonzero
if ai < aj .

For a decreasing sequence ofai consider the increasing sequencebi := 1=ai and the
result from above toi = bidi.

The second lemma proves an inequality on various weighted means.

Lemma A.2. For  2 Rk and0 < �1 < �2 < : : : < �k let � > �k. Then we have kXi=1 2i! kXi=1 2i�i(� � �i)!2 �  kXi=1 2i�i!2 kXi=1 2i(� � �i)2! :(A.1)
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Proof. The proposition is equivalent to0�Pki=1 2i�i(���i)Pki=1 2i�i 1A2 � Pki=1 2i(���i)2Pki=1 2i :
At first we show Pki=1 2i�i(���i)Pki=1 2i�i � Pki=1 2i���iPki=1 2i ;(A.2)

or equivalently Pki=1 2iPki=1 2i =�i � Pki=1 2i���iPki=1 2i�i(���i) = Pki=1 � ip���i�2Pki=1 � ip���i�2 =�i :
Both sides of this inequality are Rayleigh quotients of the form (2.6). The coefficients on
the right–hand side are weighted by the monotone increasingsequence1=p� � �1; : : : ; 1=p� � �n;
so that application of Lemma A.1 proves (A.2). We conclude the proof by estimating the
square of the right–hand side of (A.2) by applying the Cauchy–Schwarz inequality to the
nominator 0�Pki=1 2i���iPki=1 2i 1A2 = �Pki=1 i � i���i��2�Pki=1 2i�2 � Pki=1 2i(���i)2Pki=1 2i :
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