A GEOMETRIC THEORY FOR
PRECONDITIONED INVERSE ITERATION

II: CONVERGENCE ESTIMATES

KLAUS NEYMEYR

ABSTRACT. The topic of this paper is a convergence analysis of prationdd inverse
iteration (PINVIT). A sharp estimate for the eigenvalue mpgmations is derived; the
eigenvector approximations are controlled by an upper tdonthe residual vector. The
analysis is mainly based on extremal properties of variaustities which define the ge-
ometry of PINVIT.

1. INTRODUCTION

Let A be a symmetric positive definite matrix whose eigenvaluesloitrary multiplic-
ity are given by0 < \; < Ay < ... < A,. Preconditioned inverse iteration (PINVIT), as
introduced in Part |, maps a given vectowith the Rayleigh quotient

(z, Ar)
(L1) @) =0
to the next iterate
(1.2) ' =z — B7'(Az — \z).

ThereinB~! is a symmetric and positive definite matrix which approxiesahe inverse
of A so that with respect to thé—norm

(1.3) I - B~'A||l4 <~ foragiven v ¢€[0,1].

In order to derive a sharp estimate for the Rayleigh quotént, one has to analyze its
dependence on the choice of the preconditioner as well ai vacdorsz having a fixed
Rayleigh quotient equal ta.

In Part | the dependence on the preconditioner is analyzedz F£ 0 and fory €
[0, 1] the Rayleigh quotienk(z’) takes its supremum with respect to all preconditioners
satisfying (1.3) in a vector of the forrv = B(A + o) 'z. Thereinj is a scaling
constant andv is a positive shift parameter. Henaecan be represented by applying
inverse iteration with a positive shift to the vector

Here we analyze the dependence of these suprema on allthad®se Rayleigh quo-
tient has a fixed value. To be more precise we determine fangv € [\, \,] and
v € [0, 1] the maximum

(1.4) sup{\(z'); B satisfies (1.3) = # 0 with A\(z) = A}.
This maximum provides a practicable convergence estimaflNVIT, since the Rayleigh

qguotient ofxz and the constant, which describes the quality of the preconditioner, are
known guantities. The maximum (1.4) represents the casea®gst convergence, i.e. the
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minimal decrease of the Rayleigh quotient if PINVIT is applito an arbitrary iterate
with A = A(z).

Our main result concerning the eigenvalue approximatiergivien by the following
theorem. Section 3.2 contains a convergence estimated@igienvalue approximations.

Theorem 1.1. Letz(®) # 0 be an initial vector with the Rayleigh quotiexi®) := X\(z(?)
and denote the sequence of iterates of preconditionedsevtaration (1.2) by

D N0, i =0,1,2,...,

whereA() = \(z(?)). The preconditioner is assumed to satisfy (1.3) for seraef0, 1].

Then the sequence of Rayleigh quotiexi{$ decreases monotonically arid?), \())
converges to an eigenpair of. Moreover, denote by some iterate and lex = A\(z) be
its Rayleigh quotient. Then for the new iterate given by (1.2), with\'" = A(z") it holds
that:

(1) If A = Xy or A = \,,, then PINVIT is stationary in an eigenvector 4f
If A = X\, with2 <4 < n—1, then)\’ takes its maximal valu¥ = \; for PINVIT
beeing applied ta: = z;, wherez; is an eigenvector ofl corresponding to\;.

(2) If A; < A < Aij1, then the Rayleigh quotient takes its maximal valle=
Aiiv1(A,7y) (under allz with A = A(z) and all admissible preconditioners) for
PINVIT being applied to the vectar= z; ;1 with

Tiit1 = W1T; + WaTiqq.

(Thereinz; is an eigenvector ofl corresponding to the eigenvalug. The values

w? and w3 are uniquely determined by(z; ;1) = A and|z; ;41| = 1.) The
supremum\’ = \; ;11 (A, ) is given by
A7) = AN+ A — A)?/
(V5 = D= X)X + AN — A7 — X))
(15) —2’}/\/ >\i>\j (/\ — /\2)(/\] — /\)

VAN (=72 = 24 = )
AN+ A = AN AN — AT = NN — /\5)) .
For the relative decrease of = X;;+1(), ) towards the nearest eigenvalug

smaller than\ it holds

Aiir1 (A7) — N
(1.6) ;i1 Ny) = A1) = h

A=\
The proof of Theorem 1.1 is given in Section 3.

<1

We explain the result by discussing the five—point finiteatihce discretization of the
eigenproblem for the Laplacian on the squiiter]* with homogeneous Dirichlet boundary
conditions. The eigenvalues of the continuous probiéff) and of the finite difference

discretizatiom2k7l), for the mesh sizé, are given by

(k1) — 1.2 2 (M)Zi . 2@ . 2@
(1.7) A kE* 412, AL e <sm(2)+sm(2) .
The 10 smallest eigenvalues (with multiplicity) re@d 5, 5,8, 10,10, 13,13,17,17); for
h = m/50 these eigenvalues coincide wiﬂﬁf’l) within the 1 percent range. Figure 1
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FIGURE 1. Convergence estimateB; ;. (\,v) for the 10 smallest
eigenvalueé\glk’l) given by Equation (1.7).

shows the convergence estimadies . (A,v) for the eigenvalues; := /\ELM). Note that
the estimates are valid independently of the multiplicityhe eigenvalues.

The bold lines represent the cage- 0, i.e. B = A, for which PINVIT is identical with
the inverse iteration procedure (INVIT). We explicitly der this estimate describing the
poorest convergence of INVIT, by inserting= 0 andj = 7 + 1 in (1.5) and obtain

Xiip1(X,0) = (A AT, = (N + Aig — A)_l)_l ,

and

A
Piit1 (A, 0) A2+ (Aip1 — N + A1)
In each interval\;, A\;+1 [ INVIT attains its poorest convergence in those vectors ivare
spanned by the eigenvectors corresponding and; ;.

For A = X411 we have®; ;. 1(Xiy1,7) = 1, which expresses the fact that INVIT
and PINVIT are stationary in the eigenvectorsAf The curves in Figure 1 for > 0
describe the case of poorest convergence of PINVITHFer 1 PINVIT is stationary and
for smallery PINVIT behaves more and more like inverse iteration. By Theol.1 this
poorest convergence is attained in the same vectors in vitnehse iteration attains its
poorest convergence, but additionally the preconditic&r be chosen appropriately.

Consider the sequence of iterates
@, A0, j=0,1,2,...

of PINVIT. If one starts with an initial eigenvalue approxation larger than\;, it cannot
be said in principle when the Rayleigh quotiehtd move from one intervgl\;, Az, 1] to
the nextinterval of smaller eigenvalues. For the momentsgeme the Rayleigh quotients
to converge to\; the general case is discussed in the following. Once haeaghed the
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interval[A;, A2] then the “one—step” estimat@scan be used to definecanvergence rate
estimated »(A, ) for PINVIT

(1.8) O12(A,7) = sup P@12(A,7), A €]A1, Ao

A1<A<A
Confer Figure 1 to see th& »(\,v) only slightly differs from®, »(A,v). (E.g. in the
interval [2, 5] the curvey = 0.9 takes its minimum im\ ~ 2.44.) The convergence rate
©1.2(A,7) is the guaranteed relative decrease of the Rayleigh qustierthe sense of
Equation (1.6) for all further iterates of PINVIT. Hence tRayleigh quotients\() con-
vergelinearly to \; with the convergence rat®, ». In any cas®; »(\,y) can be bounded
away from 1 by using the unsharp estimate (3.3)#ok (), ).

In principle, it cannot be guaranteed that PINVIT conveltgethesmallesteigenvalue
A1 and corresponding eigenvector 4f since PINVIT for some choice of the precondi-
tioner may reach stationarity in higher eigenvectorsfs]even if the initial vector has
some contribution from the eigenvector to the smallestreigkie. But note that all eigen-
vectors to eigenvalues larger than form a null set. In practice, due to rounding errors
such an early breakdown of PINVIT is as unlikely as that isedteration may get stuck
in higher eigenvalues. Hence as a result of rounding erfd¥dT as well as PINVIT
converge from scratch to the smallest eigenvalu@nd a corresponding eigenvector. In
exact arithmetic convergence of PINVIT #q is guaranteed if the Rayleigh quotient of
the initial vector is less than,. Depending on the choice of the preconditioner and on
the eigenvector expansion of the vectoPINVIT may converge much more rapidly than
suggested by the estimate (1.5).

It is an important result that the convergence of PINVIT ia tase thatl is the mesh
analog of a differential operator does not depend on the mizgth, and hence on the
number of the variables since Equation (1.5) is a function,of;, A\;;; and~y and does
not depend on the largest eigenvalue. We assume that theodrisplicit dependence on
A, or the mesh size vig: For the best multigrid preconditioners, (1.3) is satisfiedy
bounded away from 1 independently on the mesh size. Furtirerrim case of adaptive
multigrid eigenvalue computation with a good coarse grigragimation, one expects that
the eigenvalue approximations on all levels of refinemeatlacated in[\;, s if the
discretization error is small in comparisonXe — \;. In this case the boun@ gives a
reliable convergence rate estimate.

Hence, depending on the quality of the preconditioner,reigetor/eigenvalue compu-
tation can be done with a grid independent rate while the @@®ance rates are of compa-
rable magnitude with that of multigrid methods for boundesjue problems. Therefore
PINVIT can be viewed as the eigenproblem counterpart of igridt algorithms for the
solution of boundary value problems, see also [5].

The outline of the remainder of this paper is as follows: Ict®® 2 we analyze ex-
tremal properties of some geometric quantities, which éettre geometry of the set of
the iterates of PINVIT, with respect to all vectors having@di Rayleigh quotient. These
guantities are for instance the Euclidean norm of the gradiector of the Rayleigh quo-
tient and various opening angles of cones to be defined lat8ection 3 these results and
the mini-dimensional analysis of PINVIT, as given in Padre combined to derive sharp
convergence estimates for PINVIT.

2. EXTREMAL QUANTITIES ON LEVEL SETS OF THERAYLEIGH QUOTIENT

For the following analysis we adopt the notation introduireRart I. We make use of
thec—basis introduced in Section 2 and assume (AC), see SectibRdrt |, summarizing
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some nonrestrictive assumptions on the veetdfurthermore, we consider an eigenvalue
problem with only simple eigenvalues, cf. Section 3 of Part |

2.1. Extremal behavior of |[VA(c)].

In this section we analyze the extremal behavior of the Haelh norm of the Rayleigh
quotient VA(c)| onthe level seL(\), which is defined to consist of all nonnegative vectors
on the unit sphere whose Rayleigh quotient is equal to

(2.1) LA) ={ceR" |cf=1,¢>0, \c) = A}

Theorem 2.1. Let A €]A1, A,[. The gradient of the Rayleigh quotient with respect to the
c—basis reads
2

For its Euclidean normfV\(c)| on L(A) holds:
(@) If X=X, withi € {2,...,n — 1}, then|VA(c)| takes its minimuniVA(e;)| =0
in the i—th unit vectore;.
(b) If A; < A < Aiq1, then|V(e)| takes its minimum in the vector

Cii+1 ‘= (Oa s aoa Ci, Ci+1, 0: ) O)T € L(}\),
which has only two non—-zero componeftandc;, ;.

Proof. Property (a) is a consequence of Lemma 4.1 in Part |. We enthynethod of
Lagrange multipliers to determine necessary conditionsdmstrained relative extrema
of |VA(c)| with respect to the constraintg| = 1 and(c,A'c) = 1/X. Inserting the
constraint\(c) = \in (2.2) we obtaifVA(c)| = 2X\|[(I =AA~1)¢|. Since2\|(I—AA~1)¢]|
takes its extremal value o) in the same arguments 9 — AA~")c|?, we consider a
Lagrange function with multipliers andv of the form

(2.3) L(c) = |(I = M7 Ye)> + u(le)? = 1) +v((e, A7 e) = A7H).
Hence VL = 0 reads
(2.4) (I = A"H2c+ pc+vA~te=0.

If X €]\, Ait1[, there are at least two indexkes< [ so that the componentg andc; are
nonzero, becauseis not equal to any of the unit vectors. Hence, the Lagrandéptiers
1 andv can be determined from (2.4) by solving the linear system

Lo\ (n ) L =g
I v )\ (1= )
Since\; ' — \;' # 0, the unique solution reads
A2 A2 AL = A Ak + A1)
= -1 = )
VY and v Ak
Insertingu andw in the j-th component of (2.4) we obtain
A2y = M)A = N)
PYDYDY
so thatc; = 0 for j # k,[. Hencec has necessarily the form

(2.5) c=rcgy:=(0,...,0,¢ct,0,...,0,¢1,0,...,007 € L(N).

CjZO,
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We conclude thak = A(c) € |Ax, \i[. From|c| = 1 andA(c) = A we get

AN — ) A=)
=200 2 and o = SR
YO VESYS) PN - )
By direct computation follows
4 _ AN =) (N — )
2.6 MO = ———|(IT -2 He]* = .
@6) VAP = = ) e
Since), < A < A\; one obtains
d AN3(\ — ) d AN3(X — A\p)

—|VA(0)]? = -T2 d ——|VAo)f = — 52 .

an [VA(e)] WY <0 an N [VA(e)] T >0
Thus|V\(c)| takes its minimal value in; ;1. O

2.2. Extremal propertiesof the cone C (c).

The opening angle.,(c) of the circular con&’, (c),
Cy(c) = {¢d; d € Ey(c), ¢ > 0},
enclosingE, (c) is defined by

M~te 2
(2.7) p~(c) == sup arccos(————,—).
K z€C(c) |>‘A 1C| |Z|
We show in the next lemma that the extremal propertid§of(c)| gained in Theorem 2.1
transfer to the opening angje, (c).

Lemma 2.2. Let\ € ]A1, \y[ andy € [0,1] be given. On the level sé(\) the opening
angley, (c) satisfies:
(@) If A= X\;, withi € {2,...,n — 1}, thenyp,, takes its minimunp. (e;) = 0 in the
i—th unit vector.
(b) If A; < A < Aiq1, thengp,, takes its minimum in the vectey; 1 € L(A).

Proof. Property (a) follows from the fact thd, (e;) = {e;} for any~ € [0, 1] and hence
py(ei) = 0.

Using the orthogonal decomposition of Theorem 4.3 (Pamé abtains for the opening
angle ofC. (c)
VNI = AL )]

[AA—1¢]

First we show the proposition for = 1 and then conclude on € [0, 1[. Sincearctan(-)
is strictly monotone increasing, it is sufficient to show éx¢remal properties for the argu-

-1
mentw. Moreover, since: € L(\) we obtain the same necessary conditions for

relative extrema if we analyZél — AA~!)c|?. Hence, a Lagrange multiplier ansatz leads
to the same Lagrange function as considered in Theorem2thelsame way we obtain
instead of (2.6) for the residual

(1= 2A"Ye|

(2.8) - (c) = arcsin B
c

and 1 (c) = arctan

A=) (A —A)

AN -
Differentiation with respect td, and; as in the proof of Theorem 2.1 establishes the
extremal property op; (¢) on L(A). Now lety € [0, 1], then we have from (2.8)

(2.9) sin (¢4 (c)) = ysin (p1(c)) -

(=M =
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Sincesin(:) is a strictly monotone increasing function & 7] and with o (ci,) =
min{¢p; (c); ¢ € L(\)}, one obtains fory € [0,1]

vsin (g1 (e1,)) = minfysin (1(0); ¢ € L()}.
Applying (2.9) and once more the monotonicitysaf(-) leads to

¢y(c1,n) = min{ep,(c); c € L(N)},
which establishes the required result. O

The action of PINVIT can be understood as a shrinking of titairconeC (¢): While
the vectorc lies on the boundary of’; (¢), the new iterate is an element of the shrinked
coneC, (c). We define a (complementary) shrinking angleby

(2.10) Py (e) = @1(e) — ¢y (0).
The following lemma exhibits extremal propertiesyof(c) on the level sef.()).

Lemma2.3. LetX € ]\, A,[andy € [0, 1] be given. On the level sé(A) the shrinking
angley, (c) fulfills:
(@) If A= X\;, withi € {2,...,n — 1}, theny, takes its minimuny, (e;) = 0 in the
i—th unit vector.
(b) If A; < A < Aiq1, theny, takes its minimum in the vectey; 1 € L(A).

I-2A"")c]

Proof. Leta := ! AT then

U (a) := 1 (c) = arcsin(a) — arcsin(ya).

Property (a) is an immediate consequence of property (a)eafrha 2.2. The extremal
behavior ofy; (¢) as described in Lemma 2.2 transfersate= sin ¢4, sincesin(:) is a
strictly monotone increasing function ¢, 7]. Differentiation of ¥, (a) shows that for
v€10,1]

1 —~2g2 — 1—a?
g (g2 V2 —Vi-a
da VI =1 - )
Thus¥, (a) is strictly monotone increasing inwhich completes the proof. O

2.3. Orientation of the gradient VA(w).

In the sequel we determine the orientation of the gradiectové/ A (w) within points
of supremav of the Rayleigh quotient ot (¢). The results gained here are used in the
next section to analyze the angle dependence of the Rayjeigient within these points.
Figure 2 illustrates the content of Lemma 2.4.

Lemma 2.4. Letw be a point of a supremum of the Rayleigh quotient on the corte)
fory > 0. Then

(@) If span{w, AA~'c} denotes the linear space spanneddgnd AA !¢, then
(2.11) VA(w) € span{w, \AA™"c}.
(b) There is anonzerd € R in away thatw — AA~tc = OV A(w).

Proof. SinceVA(w) = (w[fi,lw)(w — A tw), we only have to show that

A tw € span{w, A" *c},
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FIGURE 2. Orientation ofVA(w) in a pointw of an extremum.

or equivalentlyw € span{Aw,c}. By Theorem 4.8 (in Part I) any point of a supremum
has the form
(2.12) w=B(a+A)"te
Hence it remains to show that

(a4 A)te € span{A(a+ A) te, e},
or equivalentlyc € span{Ac, (a + A)c} = span{Ac, ac}. Sincea = 0 only fory = 0,
see Theorem 4.10 in Part I, the last inclusion is true.

To establish the second assertion observeihatdV )\ (w) are orthogonal since
2z
(w, A=tw)
We conclude thaty — AA~1c andVw are collinear vectors of the 2—dimensional space
span{w, AA~!¢} becauséw|? + |w — AA~1¢c|? = |AA~!¢|? defines an orthogonal decom-
position (Theorem 4.3 in Part ). O

(w, VA(w)) = (w,w — Mw)Atw) = 0.

2.4. Angle dependence of the Rayleigh quotient.

We analyze the dependence of the Rayleigh quotient on thargpanglep of the cone
C.,(c) within the plane

(2.13) P, :=span{\A "¢, v},

wherev = ﬁ w given by (2.12), denotes a point of a supremum of the Raylgigiient
on the con&”, (c). Now consider a parametrization of the unit circleRn, by z(¢) in a
way thaty = Z(2(¢), \MA~1c). To makez(y) unique, we consider that parametrization

(clockwise or anticlockwise) for which(¢*) = v andy* < 7 hold.
To express the angle dependence of the Rayleigh quotieme iplaneP, , we define

(2.14) Acw(@) = )\(Z((p))
Lemma 2.5. On the assumptions of Lemma 2.4det ﬁ Then inv = z(p*) holds
dAcyw
2.1 SV ()] = .
(2.15) S @ = 19w
Proof. Applying the chain rule we obtain
d dz(y)
2.1 — = r :
(2.16) 15\ (29) = VAT
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Since|z(p)| = 1, its derivative with respect te is tangential to the unit circle i, ,,
ie. (2(¢), 452(¢)) = 0, while additionally| 5 2()| = 1. Thus £ (¢*) andVA(v) are
collinear due to Lemma 2.4. We conclude
dz VA(v)
2.17 — (") = ——+;
inserting (2.17) in (2.16) fop = * and recognizing (2.14) completes the proof.
O

2.5. Thefunction A(c, ).

While in the preceding section the derivative of the Rayiaigiotient with respect to
the opening angle within the plarf& , is determined, we consider now the derivative of
the maximal Rayleigh quotient on the cofie(c) with respect to its opening angle

Therefore we introduce the functiorc, o), which describes the maximal value of the
Rayleigh quotient on the cor@, (c) for v € [0, 1[. To express the angle dependence of
C,(c) we also writeC., () (c) for ¢ € [0, pmax(c)[. Therein the maximal opening angle
Ymax(c) is defined bypyax(c) = arccos(‘—i‘, ‘ﬁ%ic) Thus

|

e, @) := sup A(Cy ) (€))-
The next lemma shows that the derivati»@é%i;i) andf”‘“d'i‘;(“’) coincide within the points
of suprema.

Lemma 2.6. Letw of the form (2.12) be a point of a supremum fulfilling the agstions
of Lemma 2.4 and(a) = v = . Lety* = Z( A" te,v(a)).
If > 0,i.e.inv(a) a supremum is attained, then

X ey,
(2.18) I%(c,w*ﬂ:l d(p’ (@) = [VA(v)].

Proof. Since A(-) is continuously differentiable iR™ \ {0} the function). ,(¢), see
Lemma 2.5 for its definition, is continuously differentialih . Furthermore, the function
(e, @) is continuously differentiable ip as a consequence of the representation of the
curve of suprema in the form (2.12), as derived in SectiorofiRart 1.

For givenc € R™ andy € ]0, 1] let v(«) be a point of a supremum of the Rayleigh
quotient onC, (c) with ¢* = Z(AA~'c,v()). Then by definition of\(c, ¢) for ¢ €
[0, pmax(c)[ is @ dominating function ok, , (¢) so that
(2.19) Aew() S Ale, ) and Aco(9") = Ale, 7).
The last equation results from the fact thét) lies in P, .. Since from (2.19) the positive
function(e, ) — A..» (i) takes its minimum iy = *, we conclude for the derivative

ey, o dX .
W(@ ) = d@(cﬁp ).
From Equation (2.15) in Lemma 2.5 we obtain

d\ . dAew , wyy
I35 (Il =175 (@I = VAL

(2.20)

O

Note that by Theorem 2.1 the derivative (2.18) on the levieL$&(v)) is bounded from
above byv € L(\(v)) of the formv; ,, = (v1,0,...,0,v,)T. This fact is of central
importance for the convergence theorem in the next section.
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3. CONVERGENCE ESTIMATES FORPINVIT

3.1. A convergencetheorem on the Rayleigh quotient. We are now in a position to for-
mulate the main convergence estimates for the method obpditioned inverse iteration
by combining the various extremal properties proved in i8a@. Hence in this section
our efforts for a convergence theory of PINVIT come to a close

We present a sharp estimate from above for the Rayleigh entot{z’) of the new
iterate describing the case of poorest convergence. Thilmae only depends on the
Rayleigh quotient\, on the spectral radiug of the error propagation matrik — B—' A
and on the eigenvalues df. Sharpness of the estimates means that for aaahd~ an
initial vector as well as a preconditioner can be constistethat the estimate is attained.

While Theorem 1.1 in Section 1 is stated in terms of the oabjiasis, we here continue
using thec—basis representation. It is important to note that thenedéis for the Rayleigh
guotient do not depend on the choice of the basis. We furtbier that the complex form
of the upper bound (1.5) derives from Theorem 5.1 in Part hisgiting various quantities,
each of which has a simple geometric interpretation, indoRhyleigh quotient.

Finally we note that the proof of Theorem 1.1 only has to ttbat case of simple
eigenvalues due to the analysis given in Section 3 of Pagtkrin Section 3.3 it is shown
that the convergence estimates remain to be sharp for matrith eigenvalues of arbitrary
multiplicity.

Proof of Theorem 1.1In terms of thec—basis the first assertion follows from the fact
that PINVIT is stationary within each nonzero multiple oéthnit vectore;, i = 1,...,n.

To prove the second assertion we consider the dase A\ < A+ and show that\’
takes its maximal value under alk L(\) and all admissible preconditioners in the vector

T
Cii+1 = (0,...,O,Ci,CH_l,O,...,O) 5

with A(e;:41) = A. Moreover we have to show that the maximal vaNiés defined by
Equation (1.5).

By Lemmata 2.2 and 2.3 the opening angleand the shrinking anglée., take their
minima onL(\) in ¢; ;+1 So that

Py(ciivt) <ey(e)  and Yy (ciir1) < ¥y(c).
Now consider the normed curve of the points of suprem&ofr) for v € [0, 1], which
is given by% for a € [0, 00[. The curve for; ;1; is defined analogously. Let
(vi,5+1) be two points on the curve defined byc; ;11) in a way that\(v) = A(v;,i41)-
The angles enclosed with the center of the cones are dengpted b

©* = Z(v,AA"t¢c) and <pf,i+1 = é(vi,iH,AA*lci,iH).

For the derivatives of\(c, ) and A(c; i+1,¢) With respect top from Lemma 2.6 and
Theorem 2.1 follows

d\ . dx,
(3.1) %(Cm-i-la@i,i-&-l) < %(c,w )-

Note that\(c,-) andA(c; i+1,+) are monotone increasing positive functionsdn So let
us setf (o) = Aciiv1,) andg(e) = (e, ). Furthermore, let us denote the opening
angles ofC1 (¢; ;+1) andCi (c) by a = p1(c; i41) andb = 1 (c).

So we have the situation thAtg : [0,b] — R for b > 0 are strictly monotone increasing
functions and thaf (a) = ¢(b). Further by Equation (3.1) it holds that fat 3 € [0, b]
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with f(a) = g(B) the derivatives satisfy

3.2) f'(a) < 4'(B).
So it is easy to show by integrating the inverse functigns')’ (y) and(f 1)’ (y) that for
any¢ € [0, q]
fla=¢&) >g(b—¢).
Hence, we have fof equal to the smaller shrinking angle (¢; i+1) € [0, @1(ciit1)]
Aeiit1, 9 (Ciiv1)) 2 Ale, @i (e) = 1y (ciirn)),

wherep, (ci,iv1) = p1(ciiv1) — ¥y (Cijitr)-

If ¢is not of the forme; ;11 then Theorem 2.1 implie7A(c)| > |VA(¢i,i+1)]- Thus
we havey,, (¢) > 1, (c;,i+1) from Lemma 2.3 so that

e, @1(0) = ¥y (ciivn)) > Ae,1(e) — 1y () = e, 94(0)),

which establishes; ;,; as the vector of poorest convergence, i.e.

Aeiit1, py(ciit1)) > Ale, @y (c)).-

Thuse; ;41 leads to the largest rate of convergence. Equation (1.5)edefrom the fact
that all points of suprema of the con€s(c; ;+1) remain in the planepan{e;, ;11 } due
to the analysis of Part I. Thus by Lemma 4.11 in Part | all zenmgonents of; ;; can be
removed and the mini—dimensional analysis of Part | withmplanespan{e;, e;11} can
be applied. Equation (1.5) results from Equation (5.4) iediem 5.1 (in Part I) wherg,
andX, are substituted bx; and ;.

To show that®; ;11 (\,v) < 1, we adapt the classical analysis of D’yakonov and
Orekhov [2] and obtain the upper bound
L it rend

<
9 (A—=X;)(N; —A ’
14 (1— )2 2200 )

for A €]\, Ai+1[. Finally, for any sequence of iterates
@, 2A9),  j=0,1,2,...
by (1.6) the sequence of Rayleigh quotiehtd decreases monotonically and is bounded
from below by}, . Its limes is an eigenvalue of since PINVIT is stationary if and only
if it is applied to some eigenvector of, for which the residuadz — A(z)z vanishes.

Additionally, for all A not equal to an eigenvalue af, the estimate (3.3) gives a simple
bound from above for the decrease of the Rayleigh quotient. O

(3.3) ®iir1(Ny) <

3.2. Convergence of eigenvector approximations.

So far we have not given estimates on the convergence of geeactor approxima-
tions generated by PINVIT. The main reason for this retiegsdhat the sequence of the
acute angles between the first eigenveetoand the iterates of PINVIT is in general not
monotone decreasing. To see thisét) be the acute angle between the vectande; .
Furthermore, for givem € R", with |¢c| = 1 ande; > 0, define the cond/ by

M = {d e R" x(d) < x(e)}.
Thenc — AA~!cis the normal vector on the— 1 dimensional tangent plane &f (¢) in c.

Furthermoreg — u61 is normal to the tangent plane df in c. A necessary condition for
Ei(c) Cc Mis that the normal vectors are collinear. In this case théeaangle between
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any new iterate and, is less or equal tq(c). Otherwise we havé; (¢) ¢ M, so that a
preconditioner withy near to 1 can be constructed so that the considered angteéased.
It is easy to see that in tH&? the normal vectors are collinear. But in tR&* for anyc
with ¢; # 0 for pairwise different indexes= 1, k, [ we obtain from
|ef?

c— e =wlc—A"e)
C1

Al

— A —
bothw = =~ andw_klik.

Ak —A
collinear.
Nevertheless, Theorem (2.1) by taking the maximum of Equat?.6) provides an

upper bound for the Euclidean norm of the gradient by

Since); # \; we conclude the normal vectors are not

AN =)= V)
A1\ ’
which is a variant of Temple’s inequality; cf. Chapter I11[B].

From (3.4) we derive a simple bound depending\an \; for the residual of the actual
iterate.

(3.4) [VA(e)” <

Corollary 3.1. Letc € R", |¢| = 1andX = A(c). Then
A 1/2
(T- el < (5 -1)
At
Proof. Combining (2.2) and (3.4) we have

A=A =N
AiAn

(1 =AYl <
From1 — % < 1 the proposition follows. O

3.3. Convergence estimates for matrices with multiple eigenvalues.

In Section 3 of Part | the convergence analysis of PINVIT fatmneces with multiple
eigenvalues is traced back to a reduced problem with onlplsirigenvalues. By using
the notation of that section it is shown that

(3.5) sup A(E, (c)) < sup M(E, (¢)),

where the bar denotes those quantities which are assogiitedimple eigenvalues, see
Part I. Therefore, the question arises whether or not PINddiiverges more rapdidly in

the case of multiple eigenvalues. The next lemma shows llealvbrst—case—estimate of
Theorem 1.1 is also sharp for matrices with eigenvalueshofrary multiplicity.

Lemma 3.2. Adopting the notation of Lemma 3.1 in Part | for atng R™ withé = Pcit
holds that
sup A(E, (c)) = sup A(E, (c))
Proof. Due to Theorem 4.10 in Part | for any € argsup A\(E,(¢)) there are unique
constantsy, 8 € R, so that
w = Bla+A)te
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Sincew € OE, (), for its distance to the ball's centai ~'¢ holds

(Bla+ ) 'a — ')

M-

| — AL~ é?

i=1

M(z)

Bla+ ;) —/\/\i_lci;j)2 = |w— A "c]?,

[
Mz

-
Il

1 ]:1

wherew := f(a+A)"'c € R™. Hencew € E, (c), since by Lemma 3.1in Part | we have
lc— A "te| = |e— A i¢| andw = Pw. Additionally, it holdsA(w) = A(Pw) = A(w).
We conclude by using (3.5) that

Aw) < sup A(E, (¢)) < sup A(E, () = M),
which establishes the proposition. O

4. CONCLUSION

A new theoretical framework for preconditioned gradientmoels for the eigenvalue
problem has been developed in a way that these methods eed tvack to preconditioned
inverse iteration. PINVIT, which derives from the well-kmwo inverse iteration method
where the associated system of linear equations is appateiynsolved through precon-
ditioning, turns out to be aefficientand convergent algorithm for the iterative solution of
mesheigenproblems defined by self-adjoint and coercive etligifferential operators, see
[5] for more practical questions.

A sharp convergence estimate for the eigenvalue approkinstas been derived which
does not depend on the largest eigenvalue or on the meshrsiegeonvergence theory of
PINVIT is the basis for the analysis of a preconditioned palos iteration [4], which is
the direct generalization of the subspace implementafiamverse iteration [1].

Since the given analysis provides a clear understandingezfopditioned inverse it-
eration and of its underlying geometry, the question, “Bngitioned eigensolvers —an
oxymoron?”, which is the title of a recent review article,[@Efinitely has a negative an-
swer.

APPENDIXA. EXCLUSION OF POINTS OF SUPREMA IN THE UNIT VECTORS

By using the results of Section 2, we show that suprema of tddiyh quotient on
C,(c) are not attained in vectors of the form= fe;, (with 2 < k < n, 8 # 0). Those
points of suprema result from the analysis of Part | (see Lamrb) from a Lagrange
multiplier ansatz assuming one Lagrange multiplier to beaédo zero. To make the
analysis of Part | complete we now exclude these points.

Lemma A.1. Consider a nonnegative vectore R", |¢| = 1 and to avoid stationarity
of PINVIT letc # e; fori = 1,...,n. Thenw € arg sup A(E,(c)) is of the form
w = B(a + A)~te for unique constants, 8 € R, so that points of suprema of the form
fey, are impossible.

Proof. Assumez € arg sup A(E,(c)) to be of the formz = fe;, with 2 < k£ < n. Then
A = \(z) = \i. Furthermore, due to Lemma 4.9 in Part | there is & S(a + A) lc €
E, (¢) with A(w) = A(z). Hencep = o] has at least two nonzero components and

%[vn — |VA(v)] #0.
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For the angle derivative (in the sense of Section 2.4) withénplane spanned hy= fe;,

and\A~!c we have I p
T 02
do [z]| = VA(2) - 0
sinceVA(z) = 0. Sincew # z, there are disjoirt—neighborhood¥ . (z) andU.(w). Now
decrease the opening angteof C, (c) to ¢ — dp defining a new coné€’,. (¢). Since by
w = fB(a + A)~Lc a continuous curve of points of extrema is defined, take tbeement
d¢ so small thatv € argsup E.(c) is located inU, (w). If §¢p is sufficiently small, then

because of n .
0= I%[Z]I < I%[v]l

there is a further point of a supremuine U, (z) with A\(2) = A(w). Fordy < 7/2
the Rayleigh quotienk(Z) is not equal to any of the eigenvalues4fand hence is not
collinear to any of the unit vectors. Furthermozés not of the form3 (@ + A)~'¢, since
for a given Rayleigh quotient these points of suprema arqusmiHence, such does not
satisfy the necessary conditions of the Lagrange multiplsatz of Part | so that= ey,
is not a point of a supremum. O
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