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ABSTRACT. The topic of this paper is a convergence analysis of preconditioned inverse
iteration (PINVIT). A sharp estimate for the eigenvalue approximations is derived; the
eigenvector approximations are controlled by an upper bound for the residual vector. The
analysis is mainly based on extremal properties of various quantities which define the ge-
ometry of PINVIT.

1. INTRODUCTION

LetA be a symmetric positive definite matrix whose eigenvalues ofarbitrary multiplic-
ity are given by0 < �1 < �2 < : : : < �n. Preconditioned inverse iteration (PINVIT), as
introduced in Part I, maps a given vectorx with the Rayleigh quotient

(1.1) � := �(x) = (x;Ax)(x; x)
to the next iterate

(1.2) x0 = x�B�1(Ax� �x):
ThereinB�1 is a symmetric and positive definite matrix which approximates the inverse
of A so that with respect to theA–norm

(1.3) kI � B�1AkA � 
 for a given 
 2 [0; 1[:
In order to derive a sharp estimate for the Rayleigh quotientof x0, one has to analyze its

dependence on the choice of the preconditioner as well as on all vectorsx having a fixed
Rayleigh quotient equal to�.

In Part I the dependence on the preconditioner is analyzed: For x 6= 0 and for
 2[0; 1[ the Rayleigh quotient�(x0) takes its supremum with respect to all preconditioners
satisfying (1.3) in a vector of the formw = �(A + �I)�1x. Therein� is a scaling
constant and� is a positive shift parameter. Hencew can be represented by applying
inverse iteration with a positive shift to the vectorx.

Here we analyze the dependence of these suprema on all thosex, whose Rayleigh quo-
tient has a fixed value. To be more precise we determine for given � 2 [�1; �n℄ and
 2 [0; 1[ the maximum

(1.4) supf�(x0); B satisfies (1.3); x 6= 0 with �(x) = �g:
This maximum provides a practicable convergenceestimate for PINVIT, since the Rayleigh
quotient ofx and the constant
, which describes the quality of the preconditioner, are
known quantities. The maximum (1.4) represents the case of poorest convergence, i.e. the
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minimal decrease of the Rayleigh quotient if PINVIT is applied to an arbitrary iteratex
with � = �(x).

Our main result concerning the eigenvalue approximations is given by the following
theorem. Section 3.2 contains a convergence estimate for the eigenvalue approximations.

Theorem 1.1. Letx(0) 6= 0 be an initial vector with the Rayleigh quotient�(0) := �(x(0))
and denote the sequence of iterates of preconditioned inverse iteration (1.2) by(x(j); �(j)); j = 0; 1; 2; : : : ;
where�(j) = �(x(j)). The preconditioner is assumed to satisfy (1.3) for some
 2 [0; 1[.

Then the sequence of Rayleigh quotients�(j) decreases monotonically and(x(j); �(j))
converges to an eigenpair ofA. Moreover, denote byx some iterate and let� = �(x) be
its Rayleigh quotient. Then for the new iteratex0, given by (1.2), with�0 = �(x0) it holds
that:

(1) If � = �1 or � = �n, then PINVIT is stationary in an eigenvector ofA.
If � = �i, with2 � i � n�1, then�0 takes its maximal value�0 = �i for PINVIT
beeing applied tox = xi, wherexi is an eigenvector ofA corresponding to�i.

(2) If �i < � < �i+1, then the Rayleigh quotient takes its maximal value�0 =�i;i+1(�; 
) (under allx with � = �(x) and all admissible preconditioners) for
PINVIT being applied to the vectorx = xi;i+1 withxi;i+1 = !1xi + !2xi+1:
(Thereinxi is an eigenvector ofA corresponding to the eigenvalue�i. The values!21 and!22 are uniquely determined by�(xi;i+1) = � and jxi;i+1j = 1.) The
supremum�0 = �i;i+1(�; 
) is given by�i;j(�; 
) = ��i�j(�i + �j � �)2=�
2(�j � �)(� � �i)(��j + ��i � �2i � �2j )�2
p�i�j(�� �i)(�j � �)(1.5) q�i�j + (1� 
2)(� � �i)(�j � �)��(�i + �j � �)(��j + ��i � �2i � �i�j � �2j )� :
For the relative decrease of�0 = �i;i+1(�; 
) towards the nearest eigenvalue�i
smaller than� it holds

(1.6) �i;i+1(�; 
) = �i;i+1(�; 
)� �i�� �i < 1:
The proof of Theorem 1.1 is given in Section 3.

We explain the result by discussing the five–point finite difference discretization of the
eigenproblem for the Laplacian on the square[0; �℄2 with homogeneous Dirichlet boundary
conditions. The eigenvalues of the continuous problem�(k;l) and of the finite difference
discretization�(k;l)h , for the mesh sizeh, are given by

(1.7) �(k;l) = k2 + l2; �(k;l)h = 4h2 �sin2(kh2 ) + sin2( lh2 )� :
The 10 smallest eigenvalues (with multiplicity) read(2; 5; 5; 8; 10; 10; 13; 13; 17; 17); forh = �=50 these eigenvalues coincide with�(k;l)h within the 1 percent range. Figure 1
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FIGURE 1. Convergence estimates�i;i+1(�; 
) for the 10 smallest

eigenvalues�(k;l)h given by Equation (1.7).

shows the convergence estimates�i;i+1(�; 
) for the eigenvalues�i := �(k;l)h . Note that
the estimates are valid independently of the multiplicity of the eigenvalues.

The bold lines represent the case
 = 0, i.e.B = A, for which PINVIT is identical with
the inverse iteration procedure (INVIT). We explicitly derive this estimate describing the
poorest convergence of INVIT, by inserting
 = 0 andj = i+ 1 in (1.5) and obtain�i;i+1(�; 0) = ���1i + ��1i+1 � (�i + �i+1 � �)�1��1 ;
and �i;i+1(�; 0) = �2i�2i + (�i+1 � �)(�i + �i+1) :
In each interval[�i; �i+1[ INVIT attains its poorest convergence in those vectors which are
spanned by the eigenvectors corresponding to�i and�i+1.

For � = �i+1 we have�i;i+1(�i+1; 
) = 1, which expresses the fact that INVIT
and PINVIT are stationary in the eigenvectors ofA. The curves in Figure 1 for
 > 0
describe the case of poorest convergence of PINVIT: For
 = 1 PINVIT is stationary and
for smaller
 PINVIT behaves more and more like inverse iteration. By Theorem 1.1 this
poorest convergence is attained in the same vectors in whichinverse iteration attains its
poorest convergence, but additionally the preconditioneris to be chosen appropriately.

Consider the sequence of iterates(x(j); �(j)); j = 0; 1; 2; : : :
of PINVIT. If one starts with an initial eigenvalue approximation larger than�k, it cannot
be said in principle when the Rayleigh quotients�(j) move from one interval[�k; �k+1℄ to
the next interval of smaller eigenvalues. For the moment we assume the Rayleigh quotients
to converge to�1; the general case is discussed in the following. Once havingreached the
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interval[�1; �2℄ then the “one–step” estimates� can be used to define aconvergence rate
estimate�1;2(�; 
) for PINVIT

(1.8) �1;2(�; 
) := sup�1<~����1;2(~�; 
); � 2℄�1; �2℄:
Confer Figure 1 to see that�1;2(�; 
) only slightly differs from�1;2(�; 
). (E.g. in the
interval [2; 5℄ the curve
 = 0:9 takes its minimum in� � 2:44.) The convergence rate�1;2(�; 
) is the guaranteed relative decrease of the Rayleigh quotients in the sense of
Equation (1.6) for all further iterates of PINVIT. Hence theRayleigh quotients�(j) con-
vergelinearly to�1 with the convergence rate�1;2. In any case�1;2(�; 
) can be bounded
away from 1 by using the unsharp estimate (3.3) for�1;2(�; 
).

In principle, it cannot be guaranteed that PINVIT convergesto thesmallesteigenvalue�1 and corresponding eigenvector ofA, since PINVIT for some choice of the precondi-
tioner may reach stationarity in higher eigenvectors/values, even if the initial vector has
some contribution from the eigenvector to the smallest eigenvalue. But note that all eigen-
vectors to eigenvalues larger than�1 form a null set. In practice, due to rounding errors
such an early breakdown of PINVIT is as unlikely as that inverse iteration may get stuck
in higher eigenvalues. Hence as a result of rounding errors INVIT as well as PINVIT
converge from scratch to the smallest eigenvalue�1 and a corresponding eigenvector. In
exact arithmetic convergence of PINVIT to�1 is guaranteed if the Rayleigh quotient of
the initial vector is less than�2. Depending on the choice of the preconditioner and on
the eigenvector expansion of the vectorx, PINVIT may converge much more rapidly than
suggested by the estimate (1.5).

It is an important result that the convergence of PINVIT in the case thatA is the mesh
analog of a differential operator does not depend on the meshsizeh and hence on the
number of the variables since Equation (1.5) is a function of�, �i, �i+1 and
 and does
not depend on the largest eigenvalue. We assume that there isno implicit dependence on�n or the mesh size via
: For the best multigrid preconditioners, (1.3) is satisfiedfor 

bounded away from 1 independently on the mesh size. Furthermore, in case of adaptive
multigrid eigenvalue computation with a good coarse grid approximation, one expects that
the eigenvalue approximations on all levels of refinement are located in[�1; �2[ if the
discretization error is small in comparison to�2 � �1. In this case the bound� gives a
reliable convergence rate estimate.

Hence, depending on the quality of the preconditioner, eigenvector/eigenvalue compu-
tation can be done with a grid independent rate while the convergence rates are of compa-
rable magnitude with that of multigrid methods for boundaryvalue problems. Therefore
PINVIT can be viewed as the eigenproblem counterpart of multigrid algorithms for the
solution of boundary value problems, see also [5].

The outline of the remainder of this paper is as follows: In Section 2 we analyze ex-
tremal properties of some geometric quantities, which define the geometry of the set of
the iterates of PINVIT, with respect to all vectors having a fixed Rayleigh quotient. These
quantities are for instance the Euclidean norm of the gradient vector of the Rayleigh quo-
tient and various opening angles of cones to be defined later.In Section 3 these results and
the mini–dimensional analysis of PINVIT, as given in Part I,are combined to derive sharp
convergence estimates for PINVIT.

2. EXTREMAL QUANTITIES ON LEVEL SETS OF THERAYLEIGH QUOTIENT

For the following analysis we adopt the notation introducedin Part I. We make use of
the
–basis introduced in Section 2 and assume (AC), see Section 4of Part I, summarizing
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some nonrestrictive assumptions on the vector
. Furthermore, we consider an eigenvalue
problem with only simple eigenvalues, cf. Section 3 of Part I.

2.1. Extremal behavior of jr�(
)j.
In this section we analyze the extremal behavior of the Euclidean norm of the Rayleigh

quotientjr�(
)j on the level setL(�), which is defined to consist of all nonnegative vectors
on the unit sphere whose Rayleigh quotient is equal to�
(2.1) L(�) = f
 2 Rn; j
j = 1; 
 � 0; �(
) = �g:
Theorem 2.1. Let� 2℄�1; �n[. The gradient of the Rayleigh quotient with respect to the
–basis reads

(2.2) r�(
) = 2(
;��1
) (I � ���1)
:
For its Euclidean normjr�(
)j onL(�) holds:

(a) If � = �i, with i 2 f2; : : : ; n� 1g, thenjr�(
)j takes its minimumjr�(ei)j = 0
in thei–th unit vectorei.

(b) If �i < � < �i+1, thenjr�(
)j takes its minimum in the vector
i;i+1 := (0; : : : ; 0; 
i; 
i+1; 0; : : : ; 0)T 2 L(�);
which has only two non–zero components
i and
i+1.

Proof. Property (a) is a consequence of Lemma 4.1 in Part I. We employthe method of
Lagrange multipliers to determine necessary conditions for constrained relative extrema
of jr�(
)j with respect to the constraintsj
j = 1 and (
;��1
) = 1=�. Inserting the
constraint�(
) = � in (2.2) we obtainjr�(
)j = 2�j(I����1)
j. Since2�j(I����1)
j
takes its extremal value onL(�) in the same arguments asj(I � ���1)
j2, we consider a
Lagrange function with multipliers� and� of the form

(2.3) L(
) = j(I � ���1)
j2 + �(j
j2 � 1) + �((
;��1
)� ��1):
Hence,rL = 0 reads

(2.4) (I � ���1)2
+ �
+ ���1
 = 0:
If � 2 ℄�i; �i+1[, there are at least two indexesk < l so that the components
k and
l are
nonzero, because
 is not equal to any of the unit vectors. Hence, the Lagrange multipliers� and� can be determined from (2.4) by solving the linear system� 1 ��1k1 ��1l �� �� � = � �(1� ���1k )2�(1� ���1l )2 � :
Since��1l � ��1k 6= 0, the unique solution reads� = �2�k�l � 1 and � = �(2�k�l � �(�k + �l))�k�l :
Inserting� and� in thej-th component of (2.4) we obtain�2(�j � �k)(�j � �l)�2j�k�l 
j = 0;
so that
j = 0 for j 6= k; l. Hence,
 has necessarily the form

(2.5) 
 = 
k;l := (0; : : : ; 0; 
k; 0; : : : ; 0; 
l; 0; : : : ; 0)T 2 L(�):
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We conclude that� = �(
) 2 ℄�k; �l[. Fromj
j = 1 and�(
) = � we get
2k = �k(�l � �)�(�l � �k) and 
2l = �l(�� �k)�(�l � �k) :
By direct computation follows

(2.6) jr�(
)j2 = 4(
;��1
)2 j(I � ���1)
j2 = 4�2(�� �k)(�l � �)�k�l :
Since�k < � < �l one obtainsdd�k jr�(
)j2 = �4�3(�l � �)�l�2k < 0 and

dd�l jr�(
)j2 = 4�3(�� �k)�k�2l > 0:
Thusjr�(
)j takes its minimal value in
i;i+1. �
2.2. Extremal properties of the cone C
(
).

The opening angle'
(
) of the circular coneC
(
),C
(
) = f�d; d 2 E
(
); � > 0g;
enclosingE
(
) is defined by

(2.7) '
(
) := supz2C
(
) ar

os( ���1
j���1
j ; zjzj):
We show in the next lemma that the extremal properties ofjr�(
)j gained in Theorem 2.1
transfer to the opening angle'
(
).
Lemma 2.2. Let� 2 ℄�1; �n[ and
 2 [0; 1℄ be given. On the level setL(�) the opening
angle'
(
) satisfies:

(a) If � = �i, with i 2 f2; : : : ; n � 1g, then'
 takes its minimum'
(ei) = 0 in thei–th unit vector.
(b) If �i < � < �i+1, then'
 takes its minimum in the vector
i;i+1 2 L(�).

Proof. Property (a) follows from the fact thatE
(ei) = feig for any
 2 [0; 1℄ and hence'
(ei) = 0.
Using the orthogonal decomposition of Theorem 4.3 (Part I) one obtains for the opening

angle ofC
(
)
(2.8) '
(
) = ar
sin 
j(I � ���1)
jj���1
j and '1(
) = ar
tan j(I � ���1)
jj
j :
First we show the proposition for
 = 1 and then conclude on
 2 [0; 1[. Sincear
tan(�)
is strictly monotone increasing, it is sufficient to show theextremal properties for the argu-

ment j(I����1)
jj
j . Moreover, since
 2 L(�) we obtain the same necessary conditions for

relative extrema if we analyzej(I � ���1)
j2. Hence, a Lagrange multiplier ansatz leads
to the same Lagrange function as considered in Theorem 2.1. In the same way we obtain
instead of (2.6) for the residualj(I � ���1)
j2 = (�� �k)(�l � �)�k�l :
Differentiation with respect to�k and�l as in the proof of Theorem 2.1 establishes the
extremal property of'1(
) onL(�). Now let
 2 [0; 1[, then we have from (2.8)

(2.9) sin ('
(
)) = 
 sin ('1(
)) :
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Since sin(�) is a strictly monotone increasing function on[0; �2 ℄ and with'1(
1;n) =minf'1(
); 
 2 L(�)g, one obtains for
 2 [0; 1[
 sin ('1(
1;n)) = minf
 sin ('1(
)) ; 
 2 L(�)g:
Applying (2.9) and once more the monotonicity ofsin(�) leads to'
(
1;n) = minf'
(
); 
 2 L(�)g;
which establishes the required result. �

The action of PINVIT can be understood as a shrinking of the initial coneC1(
): While
the vector
 lies on the boundary ofC1(
), the new iterate is an element of the shrinked
coneC
(
). We define a (complementary) shrinking angle 
 by

(2.10)  
(
) = '1(
)� '
(
):
The following lemma exhibits extremal properties of 
(
) on the level setL(�).
Lemma 2.3. Let� 2 ℄�1; �n[ and
 2 [0; 1℄ be given. On the level setL(�) the shrinking
angle 
(
) fulfills:

(a) If � = �i, with i 2 f2; : : : ; n� 1g, then 
 takes its minimum 
(ei) = 0 in thei–th unit vector.
(b) If �i < � < �i+1, then 
 takes its minimum in the vector
i;i+1 2 L(�).

Proof. Let a := j(I����1)
jj���1
j , then	
(a) :=  
(
) = ar
sin(a)� ar
sin(
a):
Property (a) is an immediate consequence of property (a) of Lemma 2.2. The extremal
behavior of'1(
) as described in Lemma 2.2 transfers toa = sin'1, sincesin(�) is a
strictly monotone increasing function on[0; �2 ℄. Differentiation of	
(a) shows that for
 2 ℄0; 1[ dda	
(a) = p1� 
2a2 �p1� a2p(1� a2)(1� 
2a2) > 0:
Thus	
(a) is strictly monotone increasing ina which completes the proof. �
2.3. Orientation of the gradient r�(w).

In the sequel we determine the orientation of the gradient vectorr�(w) within points
of supremaw of the Rayleigh quotient onC
(
). The results gained here are used in the
next section to analyze the angle dependence of the Rayleighquotient within these points.
Figure 2 illustrates the content of Lemma 2.4.

Lemma 2.4. Letw be a point of a supremum of the Rayleigh quotient on the coneC
(
)
for 
 > 0. Then

(a) If spanfw; ���1
g denotes the linear space spanned byw and���1
, then

(2.11) r�(w) 2 spanfw; ���1
g:
(b) There is a nonzero� 2 R in a way thatw � ���1
 = �r�(w).

Proof. Sincer�(w) = 2(w;��1w)(w � ���1w), we only have to show that��1w 2 spanfw;��1
g;
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FIGURE 2. Orientation ofr�(w) in a pointw of an extremum.

or equivalentlyw 2 spanf�w; 
g. By Theorem 4.8 (in Part I) any point of a supremum
has the form

(2.12) w = �(�+�)�1
:
Hence it remains to show that(�+�)�1
 2 spanf�(�+�)�1
; 
g;
or equivalently
 2 spanf�
; (� + �)
g = spanf�
; �
g. Since� = 0 only for 
 = 0,
see Theorem 4.10 in Part I, the last inclusion is true.

To establish the second assertion observe thatw andr�(w) are orthogonal since(w;r�(w)) = 2(w;��1w) (w;w � �(w)��1w) = 0:
We conclude thatw � ���1
 andrw are collinear vectors of the 2–dimensional spacespanfw; ���1
g becausejwj2+ jw����1
j2 = j���1
j2 defines an orthogonal decom-
position (Theorem 4.3 in Part I). �
2.4. Angle dependence of the Rayleigh quotient.

We analyze the dependence of the Rayleigh quotient on the opening angle' of the coneC
(
) within the plane

(2.13) P
;v := spanf���1
; vg;
wherev = wjwj , w given by (2.12), denotes a point of a supremum of the Rayleighquotient
on the coneC
(
). Now consider a parametrization of the unit circle inP
;v by z(') in a
way that' = \(z('); ���1
). To makez(') unique, we consider that parametrization
(clockwise or anticlockwise) for whichz('�) = v and'� < � hold.

To express the angle dependence of the Rayleigh quotient in the planeP
;v we define

(2.14) �
;v(') := �(z(')):
Lemma 2.5. On the assumptions of Lemma 2.4 letv = wjwj . Then inv = z('�) holds

(2.15) jd�
;vd' ('�)j = jr�(v)j:
Proof. Applying the chain rule we obtain

(2.16)
dd'�(z(')) = r�(z('))T dz(')d' :
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Sincejz(')j = 1, its derivative with respect to' is tangential to the unit circle inP
;v,
i.e. (z('); dd'z(')) = 0, while additionallyj dd'z(')j = 1. Thus dzd' ('�) andr�(v) are
collinear due to Lemma 2.4. We conclude

(2.17)
dzd' ('�) = � r�(v)jr�(v)j ;

inserting (2.17) in (2.16) for' = '� and recognizing (2.14) completes the proof. �
2.5. The function ��(
; ').

While in the preceding section the derivative of the Rayleigh quotient with respect to
the opening angle within the planeP
;v is determined, we consider now the derivative of
the maximal Rayleigh quotient on the coneC
(
) with respect to its opening angle'.

Therefore we introduce the function��(
; '), which describes the maximal value of the
Rayleigh quotient on the coneC
(
) for 
 2 [0; 1[. To express the angle dependence ofC
(
) we also writeC
(')(
) for ' 2 [0; 'max(
)[. Therein the maximal opening angle'max(
) is defined by'max(
) = ar

os( 
j
j ; ��1
j��1
j). Thus��(
; ') := sup�(C
(')(
)):
The next lemma shows that the derivativesd��(
;')d' and d�
;v(')d' coincide within the points
of suprema.

Lemma 2.6. Letw of the form (2.12) be a point of a supremum fulfilling the assumptions
of Lemma 2.4 andv(�) = v = wjwj . Let'� = \(���1
; v(�)).

If � > 0, i.e. inv(�) a supremum is attained, then

(2.18) j d��d' (
; '�)j = jd�
;vd' ('�)j = jr�(v)j:
Proof. Since�(�) is continuously differentiable inRn n f0g the function�
;v('), see
Lemma 2.5 for its definition, is continuously differentiable in'. Furthermore, the function��(
; ') is continuously differentiable in' as a consequence of the representation of the
curve of suprema in the form (2.12), as derived in Section 4.3of Part I.

For given
 2 Rn and
 2 ℄0; 1[ let v(�) be a point of a supremum of the Rayleigh
quotient onC
(
) with '� = \(���1
; v(�)). Then by definition of��(
; ') for ' 2[0; 'max(
)[ is a dominating function of�
;v(') so that

(2.19) �
;v(') � ��(
; ') and �
;v('�) = ��(
; '�):
The last equation results from the fact thatv(�) lies inP
;v. Since from (2.19) the positive
function��(
; ') � �
;v(') takes its minimum in' = '�, we conclude for the derivative

(2.20)
d�
;vd' ('�) = d��d' (
; '�):

From Equation (2.15) in Lemma 2.5 we obtainj d��d' (
; '�)j = jd�
;vd' ('�)j = jr�(v)j: �
Note that by Theorem 2.1 the derivative (2.18) on the level set L(�(v)) is bounded from

above byv 2 L(�(v)) of the formv1;n = (v1; 0; : : : ; 0; vn)T . This fact is of central
importance for the convergence theorem in the next section.
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3. CONVERGENCE ESTIMATES FORPINVIT

3.1. A convergence theorem on the Rayleigh quotient. We are now in a position to for-
mulate the main convergence estimates for the method of preconditioned inverse iteration
by combining the various extremal properties proved in Section 2. Hence in this section
our efforts for a convergence theory of PINVIT come to a close.

We present a sharp estimate from above for the Rayleigh quotient �(x0) of the new
iterate describing the case of poorest convergence. This estimate only depends on the
Rayleigh quotient�, on the spectral radius
 of the error propagation matrixI � B�1A
and on the eigenvalues ofA. Sharpness of the estimates means that for each� and
 an
initial vector as well as a preconditioner can be constructed so that the estimate is attained.

While Theorem 1.1 in Section 1 is stated in terms of the original basis, we here continue
using the
–basis representation. It is important to note that the estimates for the Rayleigh
quotient do not depend on the choice of the basis. We further note that the complex form
of the upper bound (1.5) derives from Theorem 5.1 in Part I by inserting various quantities,
each of which has a simple geometric interpretation, into the Rayleigh quotient.

Finally we note that the proof of Theorem 1.1 only has to treatthe case of simple
eigenvalues due to the analysis given in Section 3 of Part I. Later in Section 3.3 it is shown
that the convergence estimates remain to be sharp for matrices with eigenvalues of arbitrary
multiplicity.

Proof of Theorem 1.1.In terms of the
–basis the first assertion follows from the fact
that PINVIT is stationary within each nonzero multiple of the unit vectorsei, i = 1; : : : ; n.

To prove the second assertion we consider the case�i < � < �i+1 and show that�0
takes its maximal value under all
 2 L(�) and all admissible preconditioners in the vector
i;i+1 = (0; : : : ; 0; 
i; 
i+1; 0; : : : ; 0)T ;
with �(
i;i+1) = �. Moreover we have to show that the maximal value�0 is defined by
Equation (1.5).

By Lemmata 2.2 and 2.3 the opening angle'
 and the shrinking angle 
 take their
minima onL(�) in 
i;i+1 so that'
(
i;i+1) � '
(
) and  
(
i;i+1) �  
(
):
Now consider the normed curve of the points of suprema onC
(
) for 
 2 [0; 1℄, which

is given by (�+�)�1
j(�+�)�1
j for � 2 [0;1[. The curve for
i;i+1 is defined analogously. Letv
(vi;i+1) be two points on the curve defined by
 (
i;i+1) in a way that�(v) = �(vi;i+1).
The angles enclosed with the center of the cones are denoted by'� = \(v; ���1
) and '�i;i+1 = \(vi;i+1; ���1
i;i+1):
For the derivatives of��(
; ') and ��(
i;i+1; ') with respect to' from Lemma 2.6 and
Theorem 2.1 follows

(3.1)
d��d' (
i;i+1; '�i;i+1) � d��d' (
; '�):

Note that��(
; �) and��(
i;i+1; �) are monotone increasing positive functions in'. So let
us setf(') = ��(
i;i+1; ') andg(') = ��(
; '). Furthermore, let us denote the opening
angles ofC1(
i;i+1) andC1(
) by a = '1(
i;i+1) andb = '1(
).

So we have the situation thatf; g : [0; b℄! R for b > 0 are strictly monotone increasing
functions and thatf(a) = g(b). Further by Equation (3.1) it holds that for�; � 2 [0; b℄
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with f(�) = g(�) the derivatives satisfy

(3.2) f 0(�) � g0(�):
So it is easy to show by integrating the inverse functions(g�1)0(y) and(f�1)0(y) that for
any� 2 [0; a℄ f(a� �) � g(b� �):

Hence, we have for� equal to the smaller shrinking angle 
(
i;i+1) 2 [0; '1(
i;i+1)℄��(
i;i+1; '
(
i;i+1)) � ��(
; '1(
)�  
(
i;i+1));
where'
(
i;i+1) = '1(
i;i+1)�  
(
i;i+1).

If 
 is not of the form
i;i+1 then Theorem 2.1 impliesjr�(
)j > jr�(
i;i+1)j. Thus
we have 
(
) >  
(
i;i+1) from Lemma 2.3 so that��(
; '1(
)�  
(
i;i+1)) > ��(
; '1(
)�  
(
)) = ��(
; '
(
));
which establishes
i;i+1 as the vector of poorest convergence, i.e.��(
i;i+1; '
(
i;i+1)) > ��(
; '
(
)):
Thus
i;i+1 leads to the largest rate of convergence. Equation (1.5) derives from the fact
that all points of suprema of the conesC
(
i;i+1) remain in the planespanfei; ei+1g due
to the analysis of Part I. Thus by Lemma 4.11 in Part I all zero components of
i;i+1 can be
removed and the mini–dimensional analysis of Part I within the planespanfei; ei+1g can
be applied. Equation (1.5) results from Equation (5.4) in Theorem 5.1 (in Part I) where�1
and�2 are substituted by�i and�j .

To show that�i;i+1(�; 
) < 1, we adapt the classical analysis of D’yakonov and
Orekhov [2] and obtain the upper bound

(3.3) �i;i+1(�; 
) � 1� (1� 
)2 �i+1���i+11 + (1� 
)2 (���i)(�i+1��)�i�i+1 < 1;
for � 2℄�i; �i+1[. Finally, for any sequence of iterates(x(j); �(j)); j = 0; 1; 2; : : :
by (1.6) the sequence of Rayleigh quotients�(j) decreases monotonically and is bounded
from below by�1. Its limes is an eigenvalue ofA since PINVIT is stationary if and only
if it is applied to some eigenvector ofA, for which the residualAx � �(x)x vanishes.
Additionally, for all � not equal to an eigenvalue ofA, the estimate (3.3) gives a simple
bound from above for the decrease of the Rayleigh quotient. �
3.2. Convergence of eigenvector approximations.

So far we have not given estimates on the convergence of the eigenvector approxima-
tions generated by PINVIT. The main reason for this reticence is that the sequence of the
acute angles between the first eigenvectore1 and the iterates of PINVIT is in general not
monotone decreasing. To see this, let�(d) be the acute angle between the vectord ande1.
Furthermore, for given
 2 Rn, with j
j = 1 and
1 > 0, define the coneM byM = fd 2 Rn; �(d) � �(
)g:
Then
����1
 is the normal vector on then�1 dimensional tangent plane ofE1(
) in 
.
Furthermore,
� j
j2
1 e1 is normal to the tangent plane ofM in 
. A necessary condition forE1(
) � M is that the normal vectors are collinear. In this case the acute angle between
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any new iterate ande1 is less or equal to�(
). Otherwise we haveE1(
) 6� M , so that a
preconditioner with
 near to 1 can be constructed so that the considered angle is increased.

It is easy to see that in theR2 the normal vectors are collinear. But in theRn for any

with 
i 6= 0 for pairwise different indexesi = 1; k; l we obtain from
� j
j2
1 e1 = !(
� ���1
)
both! = �k�k�� and! = �l�l�� . Since�k 6= �l we conclude the normal vectors are not
collinear.

Nevertheless, Theorem (2.1) by taking the maximum of Equation (2.6) provides an
upper bound for the Euclidean norm of the gradient by

(3.4) jr�(
)j2 � 4�2(�� �1)(�n � �)�1�n ;
which is a variant of Temple’s inequality; cf. Chapter III in[6].

From (3.4) we derive a simple bound depending on���1 for the residual of the actual
iterate.

Corollary 3.1. Let 
 2 Rn, j
j = 1 and� = �(
). Thenj(I � ���1)
j � � ��1 � 1�1=2
Proof. Combining (2.2) and (3.4) we havej(I � ���1)
j2 � (�� �1)(�n � �)�1�n
From1� ��n � 1 the proposition follows. �
3.3. Convergence estimates for matrices with multiple eigenvalues.

In Section 3 of Part I the convergence analysis of PINVIT for matrices with multiple
eigenvalues is traced back to a reduced problem with only simple eigenvalues. By using
the notation of that section it is shown that

(3.5) sup�(E
(
)) � sup ��(E
(�
));
where the bar denotes those quantities which are associatedwith simple eigenvalues, see
Part I. Therefore, the question arises whether or not PINVITconverges more rapdidly in
the case of multiple eigenvalues. The next lemma shows that the worst–case–estimate of
Theorem 1.1 is also sharp for matrices with eigenvalues of arbitrary multiplicity.

Lemma 3.2. Adopting the notation of Lemma 3.1 in Part I for any
 2 Rm with �
 = P
 it
holds that sup�(E
(
)) = sup ��(E
(�
))
Proof. Due to Theorem 4.10 in Part I for any�w 2 arg sup ��(E
(�
)) there are unique
constants�; � 2 R, so that �w = �(�+ ��)�1�
:
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Since �w 2 �E
(�
), for its distance to the ball’s center����1�
 holdsj �w � ����1�
j2 = nXi=1 ��(�+ �i)�1�
i � ���1i �
i�2= nXi=1 m(i)Xj=1 ��(�+ �i)�1
i;j � ���1i 
i;j�2 = jw � ���1
j2;
wherew := �(�+�)�1
 2 Rm. Hence,w 2 E
(
), since by Lemma 3.1 in Part I we havej
� ���1
j = j�
� ����1
j and �w = Pw. Additionally, it holds�(w) = ��(Pw) = ��( �w).
We conclude by using (3.5) that�(w) � sup�(E
(
)) � sup ��(E
(�
)) = ��( �w);
which establishes the proposition. �

4. CONCLUSION

A new theoretical framework for preconditioned gradient methods for the eigenvalue
problem has been developed in a way that these methods are traced back to preconditioned
inverse iteration. PINVIT, which derives from the well–known inverse iteration method
where the associated system of linear equations is approximately solved through precon-
ditioning, turns out to be anefficientand convergent algorithm for the iterative solution of
mesheigenproblems defined by self–adjoint and coercive elliptic differential operators, see
[5] for more practical questions.

A sharp convergenceestimate for the eigenvalue approximations has been derived which
does not depend on the largest eigenvalue or on the mesh size.The convergence theory of
PINVIT is the basis for the analysis of a preconditioned subspace iteration [4], which is
the direct generalization of the subspace implementation of inverse iteration [1].

Since the given analysis provides a clear understanding of preconditioned inverse it-
eration and of its underlying geometry, the question, “Preconditioned eigensolvers –an
oxymoron?”, which is the title of a recent review article [3], definitely has a negative an-
swer.

APPENDIX A. EXCLUSION OF POINTS OF SUPREMA IN THE UNIT VECTORS

By using the results of Section 2, we show that suprema of the Rayleigh quotient onC
(
) are not attained in vectors of the formz = �ek (with 2 � k � n, � 6= 0). Those
points of suprema result from the analysis of Part I (see Lemma 4.5) from a Lagrange
multiplier ansatz assuming one Lagrange multiplier to be equal to zero. To make the
analysis of Part I complete we now exclude these points.

Lemma A.1. Consider a nonnegative vector
 2 Rn, j
j = 1 and to avoid stationarity
of PINVIT let 
 6= ei for i = 1; : : : ; n. Thenw 2 arg sup�(E
(
)) is of the formw = �(� + �)�1
 for unique constants�; � 2 R, so that points of suprema of the form�ek are impossible.

Proof. Assumez 2 arg sup�(E
(
)) to be of the formz = �ek with 2 � k � n. Then� = �(z) = �k. Furthermore, due to Lemma 4.9 in Part I there is aw = �(� + �)�1
 2E
(
) with �(w) = �(z). Hence,v = wjwj has at least two nonzero components andj d��d' [v℄j = jr�(v)j 6= 0:
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For the angle derivative (in the sense of Section 2.4) withinthe plane spanned byz = �ek
and���1
 we have j d�d' [z℄j = r�(z)T dzd' = 0
sincer�(z) = 0. Sincew 6= z, there are disjoint�–neighborhoodsU�(z) andU�(w). Now
decrease the opening angle' of C
(
) to ' � Æ' defining a new coneC
0(
). Since byw = �(� + �)�1
 a continuous curve of points of extrema is defined, take the incrementÆ' so small that~w 2 arg supE
0(
) is located inU�(w). If Æ' is sufficiently small, then
because of 0 = j d�d' [z℄j < j d��d' [v℄j
there is a further point of a supremum~z 2 U�(z) with �(~z) = �( ~w). For Æ' < �=2
the Rayleigh quotient�(~z) is not equal to any of the eigenvalues ofA and hence~z is not
collinear to any of the unit vectors. Furthermore,~z is not of the form~�(~� + �)�1
, since
for a given Rayleigh quotient these points of suprema are unique. Hence, such~z does not
satisfy the necessary conditions of the Lagrange multiplier ansatz of Part I so thatz = �ek
is not a point of a supremum. �
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