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THE BLOCK PRECONDITIONED STEEPEST DESCENT ITERATION

FOR ELLIPTIC OPERATOR EIGENVALUE PROBLEMS

KLAUS NEYMEYR∗ AND MING ZHOU∗

Abstract. The block preconditioned steepest descent iteration is an iterative eigensolver for sub-
space eigenvalue and eigenvector computations. An important area of application of the method is the
approximate solution of mesh eigenproblems for self-adjoint and elliptic partial differential operators.
The subspace iteration allows to compute some of the smallest eigenvalues together with the associated
invariant subspaces simultaneously. The building blocks of the iteration are the computation of the pre-
conditioned residual subspace for the current iteration subspace and the application of the Rayleigh-Ritz
method in order to extract an improved subspace iterate.

The convergence analysis of this iteration provides new sharp estimates for the Ritz values. It is
based on the analysis of the vectorial preconditioned steepest descent iteration which appeared in SIAM
J. Numer. Anal., 50(6):3188-3207, 2012. Numerical experiments using a finite element discretization of
the Laplacian with up to 5 · 107 degrees of freedom and with multigrid preconditioning demonstrate the
near-optimal complexity of the method.

Key words. Subspace iteration, steepest descent/ascent, Rayleigh-Ritz procedure, elliptic eigenvalue
problem, multigrid, preconditioning.

1. Introduction. Let Ω be a bounded polygonal region in the R
d, often d = 2 or

d = 3, and let the boundary ∂Ω be the disjoint union of ∂Ω1 and ∂Ω2. We consider the
self-adjoint elliptic eigenvalue problem

−∇ · (c(x)∇u) + q(x)u = λu in Ω,

u = 0 on ∂Ω1,(1.1)

n · c(x)∇u = 0 on ∂Ω2.

Therein c(x) is a symmetric and positive definite matrix valued function, q(x) a nonnega-
tive real function and n denotes the normal vector on the boundary ∂Ω2. The coefficient
functions are assumed piecewise continuous. We are interested in the numerical approxi-
mation of some of the smallest eigenvalues λ and the corresponding eigenfunctions u.

The finite element discretization of (1.1) is the generalized matrix eigenvalue problem

Axi = λiMxi.(1.2)

The discretization matrix A and the mass matrix M are symmetric, positive definite n×n
matrices. Typically, these matrices are very large and sparse.

Our aim is to compute a fixed number of the smallest eigenvalues of (1.2) together
with the associated eigenvectors. The numerical algorithm should exploit the structure
of the mesh eigenproblem, and its computational costs should increase almost linearly in
dimension n. The demand for a near-optimal-complexity method rules out all eigensolvers
which are usually used for small and dense matrices. See [4, 21, 2] for getting an overview
on the wide variety of numerical eigensolvers primarily for small and dense matrices.

A conceptually easy approach to the desired near-optimal-complexity eigensolvers is
based on gradient iterations for the Rayleigh quotient; cf. Dyakonov’s monograph on
optimization for elliptic problems [3] and its Chapter 9 on the Rayleigh-Ritz method for
spectral problems. The starting point is the generalized Rayleigh quotient for (1.2)

ρ(x) = (x,Ax)/(x,Mx), x 6= 0.(1.3)
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As ρ(·) attains its minimum λ1 in an associated eigenvector, the minimization of (1.3) can
be implemented by means of a gradient iteration. The negative gradient of (1.3) reads

−∇ρ(x) = −2(Ax− ρ(x)Mx)/(x,Mx)

and allows to construct a new iterate x′ = x−ω∇ρ(x) with ρ(x′) < ρ(x) whenever x is not
an eigenvector and ω ∈ R is a proper step length. The optimal step length ω∗ minimizes
ρ(x′) with respect to ω ∈ R. These optimal x′ and ρ(x′) can be computed by applying the
Rayleigh-Ritz procedure to the 2D space spanned by x and ∇ρ(x). The gradient iteration
does not change A and M and does not need these matrices explicitly. It is a so-called
matrix-free method in the sense that its implementation only requires routines z 7→ Az
and z 7→ Mz. The sparsity of A and M allows to implement these matrix-vector products
with computational costs which only increase linearly in the number of unknowns.

1.1. Preconditioning of gradient iterations. Gradient iterations for the Rayleigh
quotient which use the Euclidean gradient ∇ρ(x) are well known to converge poorly if the
condition number of A is large [5, 6, 7, 23, 28, 8, 12]. This is particularly the case for a
finite element discretization of (1.1) since the condition number of A increases as O(h−2)
in the discretization parameter h.

The key ingredient to make a gradient iteration an efficient solver for the operator
eigenvalue problem (1.1) is multigrid preconditioning. If a symmetric and positive definite
matrix T is an approximate inverse of A, then T is called a preconditioner for A. The
preconditioned gradient iteration uses

−T∇ρ(x)

as the descent direction for the Rayleigh quotient. The usage of the T -gradient can be
interpreted as a change of the underlying geometry which makes ellipsoidal level sets of
ρ(·) more spherical [25, 3]. Proper preconditioning, for instance by multigrid or multilevel
preconditioning, can accelerate the convergence considerably. In the best case this can
result in grid-independent convergence behavior [10, 11].

The T -gradient steepest descent iteration optimizes the step length ω

x′ = x− ωT∇ρ(x) = x− 2ωT (Ax− ρ(x)Mx)/(x,Mx)(1.4)

in a way that x′ attains the smallest possible Rayleigh quotient for all ω ∈ R. If
T (Ax−ρ(x)Mx) is a Ritz vector, then ω may be infinite. Computationally x′ is determined
by the Rayleigh-Ritz procedure since x′ is a Ritz vector of (A,M) in the two-dimensional
subspace span{x, T (Ax− ρ(x)Mx)} corresponding to the smaller Ritz value. The result-
ing iteration has some similarities with the Davidson method [24, 20] if the iteration is
restarted after each step so that the dimension of the truncated search subspace always
equals 2. Stathopoulos [27] calls such an iteration with constant memory requirement a
Generalized Davidson method.

The eigenpairs of (1.2) are denoted by (λi, xi). The enumeration is 0 < λ1 < λ2 <
. . . < λn. We assume simple eigenvalues. The case of multiple eigenvalues can simply be
reduced to that of only simple eigenvalues by a proper projection of the eigenvalue problem.
Alternatively, a continuity argument can be used to show that colliding eigenvalues do not
change the structure of the convergence estimates, cf. Lemma 2.1 in [17].

For the vectorial Preconditioned Steepest Descent (PSD) iteration (1.4) sharp conver-
gence estimates have recently been proved in [17]. The central theorem reads as follows:

Theorem 1.1. Let x ∈ R
n so that the Rayleigh quotient ρ(x) satisfies λi < ρ(x) <

λi+1 for some i ∈ {1, . . . , n − 1}. Let x′ be the Ritz vector of (A,M) in span{x, T (Ax−
ρ(x)Mx)} which corresponds to the smaller Ritz value. The Ritz value is ρ(x′). The
preconditioner satisfies

γ1(x, T
−1x) ≤ (x,Ax) ≤ γ2(x, T

−1x) ∀ x ∈ R
n(1.5)
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with constants γ1, γ2 ≥ 0. Let γ := (γ2 − γ1)/(γ2 + γ1).
Then either ρ(x′) ≤ λi or ρ(x′) ∈ (λi, λi+1) is bounded from above as follows

0 <
∆i,i+1(ρ(x

′))

∆i,i+1(ρ(x))
≤

(
κ+ γ(2− κ)

(2− κ) + γκ

)2

with κ =
λi(λn − λi+1)

λi+1(λn − λi)
.(1.6)

Therein ∆p,q(θ) := (θ − λp)/(λq − θ).
The estimate (1.6) cannot be improved in terms of the eigenvalues λi, λi+1 and λn.

The bound can be attained for λ → λi in the three-dimensional invariant subspace Ei,i+1,n,
which is spanned by the eigenvectors corresponding to λi, λi+1 and λn.

Theorem 1.1 guarantees monotone convergence of the Ritz values ρ(x′) towards an
eigenvalue. If the Rayleigh quotient ρ(x) has reached the final interval [λ1, λ2), then (1.6)
proves linear convergence of the Ritz values towards the smallest eigenvalue λ1.

1.2. Aim of this paper. This paper aims at generalizing the preconditioned gradi-
ent iteration (1.4) to a subspace iteration for the simultaneous computation of s smallest
eigenvalues of (1.2). New and sharp convergence estimates on the Ritz values of (A,M)
in the iteration subspaces are presented, which generalize Theorem 1.1.

The effectiveness of the method is demonstrated for the Laplacian eigenvalue problem
on the sliced unit circle with mixed homogeneous Dirichlet and Neumann boundary con-
ditions. The operator eigenvalue problem is discretized with linear and quadratic (only
for error estimation) finite elements. Our finite element code AMPE, see Section 4, is
demonstrated to work with up to 5 · 107 degrees of freedom. AMPE uses a multigrid
preconditioner with Jacobi smoothing.

1.3. Notation and overview. Subspaces are denoted by capital calligraphic letters,
e.g., the column space of a matrix Z is Z = span{Z}. Similarly, span{Z, Y } is the smallest
vector space which contains the column spaces of Z and of Y . All eigenvalues and Ritz
values are enumerated in order of increasing magnitude. Further, Eindex-set denotes the
invariant subspace of (A,M) which is spanned by the eigenvectors of (A,M) whose indexes
are contained in the index set.

The paper is structured as follows: The preconditioned gradient subspace iteration
is introduced in Section 2. The new convergence estimates are presented in Section 3;
Theorem 3.2 is the central new estimate on the convergence of the Ritz values. In Section 4
numerical experiments illustrate the sharpness of the estimates and the cluster-robustness
of the preconditioned gradient subspace iteration.

2. The block preconditioned iteration with Rayleigh-Ritz projections. The
preconditioned subspace/block iteration is a straightforward generalization of the vector
iteration (1.4). The iteration (1.4) is just applied to each column of the matrix which
columnwise contains the Ritz vectors of the current subspace. Each subspace correction
step is followed by the Rayleigh-Ritz procedure in order to extract the Ritz approxima-
tions.

The starting point is an s-dimensional subspace V of the R
n which is given by the

column space of V ∈ R
n×s. The columns of V are assumed to be the M -normalized Ritz

vectors of (A,M) in V . Further, Θ = diag(θ1, . . . , θs) is the s× s diagonal matrix of the
corresponding Ritz values. The matrix residual

AV −MVΘ ∈ R
n×s

contains columnwise the residuals of the Ritz vectors. Left multiplication with the pre-
conditioner T ≈ A−1 coincides with the approximate solution of s linear systems in A.
This yields the correction-subspace span{T (AV −MVΘ)} of the preconditioned subspace
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iteration. The Rayleigh-Ritz procedure is used to extract the s smallest Ritz values and
the associated Ritz vectors of (A,M) in span{V, T (AV −MVΘ)}, see Algorithm 1.

Algorithm 1 Block preconditioned steepest descent iteration:

Require: Symmetric and positive definite matrices A,M ∈ R
n×n, a preconditioner T sat-

isfying (1.5) and an initial (random) s-dimensional subspace V(0) with ∠M (V(0), E1:s) <
π/2 where E1:s is the invariant subspace of (A,M) associated with the s smallest eigen-
values.

1. Initialization: Apply the Rayleigh-Ritz procedure to V(0). The n × s matrix

V (0) = [v
(0)
1 , . . . v

(0)
s ] contains the Ritz vectors of (A,M) corresponding to the

s Ritz values θ
(0)
1 , . . . , θ

(0)
s . Let Θ(0) = diag(θ

(0)
1 , . . . , θ

(0)
s ) and R(0) = AV (0) −

MV (0)Θ(0).
2. Iteration, i ≥ 0: The Rayleigh-Ritz procedure is applied to span{V (i), TR(i)}.

The columns of V (i+1) = [v
(i+1)
1 , . . . v

(i+1)
s ] are the Ritz vectors of (A,M)

corresponding to the s smallest Ritz values θ
(i+1)
1 , . . . , θ

(i+1)
s . Let Θ(i+1) =

diag(θ
(i+1)
1 , . . . , θ

(i+1)
s ) and R(i+1) = AV (i+1) −MV (i+1)Θ(i+1).

3. Termination: The iteration is stopped if ‖R(i+1)‖ drops below a final accuracy.

2.1. The block steepest descent iteration. The block steepest descent iteration
as given by Algorithm 1 has already been analyzed for the special case T = A−1 (precon-
ditioning with the exact inverse of the discretization matrix A) in [19]. If in the central
convergence estimates of this paper, see Corollary 3.2 and Theorem 3.2, γ = 0 is inserted,
then the convergence factor

κi + γ(2− κi)

(2− κi) + γκi
with κi =

λki
(λn − λki+1)

λki+1(λn − λki
)

simplifies to κi/(2− κi). This bound has been proved in case 1b of Theorem 1.1 in [19].
However, the convergence analysis for the block steepest descent iteration with a

general preconditioner does not rest upon the analysis in [19]. In fact, the analysis of
the current paper uses the convergence analysis for the vectorial preconditioned steepest
descent iteration from [17]. By starting with the result from [17] some of the proof
techniques from [19] can be adapted to the block iteration with general preconditioning.
One important modification is that the argument using the subspace dimensions from
Theorem 3.2 of [19] cannot be transferred to the case of general preconditioning. Instead,
we use here Sion’s theorem for the proof of Theorem 3.1. The proof structure of the
present paper has also some similarities with the chain of arguments in [14] wherein a
convergence analysis of the subspace variant of the preconditioned inverse iteration is
contained. References to similar results and similar proof techniques are given prior to
Lemma 3.1, Theorem 3.1 and Theorem 3.2.

3. Convergence analysis. Next convergence estimates on the convergence of the

Ritz values θ
(i+1)
j with j = 1, . . . , s and i ≥ 0, see Algorithm 1, towards the eigenvalues

of (A,M) are proved. In Theorem 3.1 together with Corollary 3.2 the convergence of the

largest of these Ritz values, namely θ′s := θ
(i+1)
s , is analyzed. It is shown that the Ritz

value θ′s of (A,M) in span{V, T (AV −MVΘ)} is bounded from above by the largest Ritz
value which can be attained by the vector iteration PSD (1.4) if applied elementwise to
the column space of V . Theorem 3.2 proves sharp estimates for the remaining Ritz values
by induction.

In the following analysis we assume that the preconditioner satisfies the inequality
‖I − TA‖A ≤ γ < 1. This assumption is equivalent to (1.5) with γ := (γ2 − γ1)/(γ2 + γ1)
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V

A−1MVΘ− V

A−1MVΘ A

Fig. 3.1. A-orthogonal decomposition in the Rn×s

if the preconditioner is optimally scaled. The PSD iteration implicitly determines this
optimal scaling by the Rayleigh-Ritz procedure.

The next lemma generalizes Lemma 3.1 from [14].
Lemma 3.1. Let the columns of V ∈ R

n×s form a Ritz basis of span{V }, and let T
be a symmetric and positive definite matrix with ‖I − TA‖A ≤ γ < 1.

i) For any a ∈ R
s \ {0} and any c ∈ R

s it holds that

‖A−1MVΘa− V a‖A ≤ ‖A−1MVΘa− V c‖A.(3.1)

ii) The matrix ωVΘ +
(
V − T (AV −MVΘ)

)
preserves for all ω ∈ R the full rank

s of the matrix V .
iii) Let x be given as in Theorem 1.1, and let x̃ ∈ R

n satisfy

‖A−1Mx− x̃‖A ≤ γ‖A−1Mx− x/ρ(x)‖A.(3.2)

If

x′ ∈ arg min
v∈span{x,x̃}

ρ(v),(3.3)

then the PSD estimate (1.6) applies to the Ritz vector x′ given by (3.3) and its
Rayleigh quotient ρ(x′).

Proof. i) The A-orthogonality, see Fig. 3.1,

(V z, (A−1MVΘ− V )a)A = zTV T (MVΘ−AV )a = zT (Θ −Θ)a = 0 ∀z ∈ R
s

shows that V a is the A-orthogonal projection of A−1MVΘa on span{V }. This guarantees
that

‖A−1MVΘa− V a‖A ≤ ‖A−1MVΘa− V c‖A

for all c ∈ R
s.

ii) Direct computation shows that for a ∈ R
s \ {0}

‖ωVΘa+ (V − T (AV −MVΘ))a‖A

=‖ωVΘa+A−1MVΘa+ (I − TA)(V −A−1MVΘ)a‖A

≥‖ωVΘa+A−1MVΘa‖A − ‖(I − TA)(V −A−1MVΘ)a‖A

>‖A−1MVΘa− V (−ωΘa)︸ ︷︷ ︸
=:c

‖A − ‖(V −A−1MVΘ)a‖A ≥ 0.

The last inequality holds with c = −ωΘa due to (3.1). The fact ‖ωVΘa+ (V − T (AV −
MVΘ))a‖A > 0 for all a 6= 0 proves that the matrix ωVΘ + (V − T (AV −MVΘ)) has
the full rank.
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iii) Inequality (3.2) is equivalent to ‖ρ(x)A−1Mx− ρ(x)x̃‖A ≤ γ‖ρ(x)A−1Mx− x‖A.
This means that ρ(x)x̃ is contained in a ball with the center ρ(x)A−1Mx and the radius
γ‖ρ(x)A−1Mx − x‖A. The geometry of the fixed-step-length preconditioned gradient
iteration [10, 17] shows that ρ(x)x̃ is representable by a symmetric and positive definite

T̃ with ‖I − T̃A‖A ≤ γ in the form

ρ(x)x̃ = x− T̃ (Ax− ρ(x)Mx).

The preconditioned steepest descent iteration accelerates the convergence of this fixed-
step-length iteration by applying the Rayleigh-Ritz procedure to

span{x, T̃ (Ax − ρ(x)Mx)} = span{x, x̃}.

Thus the smallest Ritz value ρ(x′) in this space is bounded from above by the estimate
(1.6).

The next theorem proves the desired convergence behavior for the largest Ritz value
θ′s. Comparable estimates on the largest Ritz values, but with respect to different spaces,
have been used in Theorem 3.2 in [14] on the subspace analysis of the preconditioned
inverse iteration and in Theorem 3.2 in [19] on the block steepest descent iteration.

Theorem 3.1. Let span{V } contain no eigenvector of A, which otherwise could easily
be split off within the Rayleigh-Ritz procedure. Then the s-th Ritz value θ′s of (A,M) in
W := span{V, T (AV −MVΘ)}, which is given by

θ′s = min
Z⊆W

dimZ=s

max
z∈Z\{0}

ρ(z),(3.4)

satisfies

θ′s ≤ max
a∈Rs\{0}

min
ω∈R

ρ
(
ωVΘa+

(
V − T (AV −MVΘ)

)
a
)
=: θ̂s.(3.5)

Proof. Let a∗ ∈ R
s \ {0} and ω∗ ∈ R be given in a way so that the max-min in (3.5)

is attained

θ̂s = ρ
(
ω∗ VΘ︸︷︷︸

=:W1

a∗ +
(
V − T (AV −MVΘ)

)
︸ ︷︷ ︸

=:W2

a∗
)
.(3.6)

Hence (a∗, ω∗) is a saddle point of the Rayleigh quotient. In a sufficiently small neighbor-
hood Q × Ω of (a∗, ω∗) the Rayleigh quotient ρ(·) is a smooth function which is concave
in a and convex in ω. Sion’s-minimax theorem [26, 22] provides the justification to swap
the order of the minimization and the maximization, i.e.

θ̂s = ρ(ω∗W1a
∗ +W2a

∗) = max
a∈Q

min
ω∈Ω

ρ(ωW1a+W2a) = min
ω∈Ω

max
a∈Q

ρ(ωW1a+W2a).

Thus ρ(ωW1a+W2a) is the Rayleigh quotient of a with respect to the projected matrix-
pair (WTAW,WTMW ) with W = ωW1 + W2. The local maximum in a ∈ Q coincides
with the global maximum of ρ(·) in the column space of W (because the maximum is
taken in the interior of Q and because the Hessian of the Rayleigh quotient shows that
there is only one local extremum which is a maximum). We conclude that

min
ω∈Ω

max
a∈Q

ρ(ωW1a+W2a) = min
ω∈Ω

θmax(ωW1 +W2).

We denote the minimum point with respect to ω ∈ Ω by ω̄ so that θ̂s = θmax(ω̄W1 +W2).

Therefore θ̂s is the largest Ritz value of (A,M) in the column space Z of ω̄W1+W2 ∈ R
n×s.
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Lemma 3.1 guarantees that the dimension of Z equals s. Since Z is a subspace of W one
gets with (3.4) that θ′s ≤ maxz∈Z\{0} ρ(z) = θ̂s.

Corollary 3.2. If the s-th Ritz value θs of (A,M) in V is contained in (λq, λq+1),
q ∈ {1, . . . , n− 1}, then for the s-th Ritz value θ′s of (A,M) in span{V, T (AV −MVΘ)}
it holds that either θ′s ≤ λq or

0 <
∆q,q+1(θ

′
s)

∆q,q+1(θs)
≤

(
κ+ γ(2− κ)

(2− κ) + γκ

)2

with κ =
λq(λn − λq+1)

λq+1(λn − λq)
.(3.7)

Proof. If q = n − 1, then the first alternative θ′s ≤ λn−1 applies since the s-th Ritz
value of (A,M) in the at least (s + 1)-dimensional subspace span{V, T (AV −MVΘ)} is
smaller than or equal to λn−1 (due to the min-max principles).

Next let q < n−1 and assume λq < θ′s for which (3.7) is to be proved. For λq ≤ θ < λr

the function ∆q,r(θ) = (θ− λq)/(λr − θ) is monotone increasing in θ. Theorem 3.1 shows

that θ′s ≤ θ̂s so that

∆q,q+1(θ
′
s) ≤ ∆q,q+1(θ̂s).(3.8)

In order to apply Lemma 3.1, case iii, to x = VΘa∗ and x̃ =
(
V −T (AV −MVΘ)

)
a∗

we show that

‖A−1Mx− x̃‖A = ‖A−1MVΘa∗ − V a∗ + T (AV −MVΘ)a∗‖A

= ‖(I − TA)(A−1MVΘa∗ − V a∗)‖A

≤ γ‖A−1MVΘa∗ − V a∗‖A

≤ γ‖A−1MVΘa∗ − V Θa∗/ρ(x)︸ ︷︷ ︸
c

‖A = γ‖A−1Mx− x/ρ(x)‖A

Therein the last inequality is proved with (3.1). Thus part iii in Lemma 3.1 guarantees that
the PSD estimate (1.6) can be applied to the smallest Ritz value of (A,M) in span{x, x̃}.

By (3.6) this Ritz vector is ω∗x + x̃ with the Ritz value θ̂s. Hence the vectorial PSD
estimate (1.6) results in

∆q,q+1(θ̂s) ≤

(
κ+ γ(2− κ)

(2− κ) + γκ

)2

∆q,q+1

(
ρ(x)

)
.(3.9)

This concludes the proof since ρ(x), x ∈ span{V }, is bounded by the largest Ritz value
θs of (A,M) in span{V }, i.e.

∆q,q+1

(
ρ(x)

)
≤ ∆q,q+1(θs).(3.10)

The chain of inequalities (3.8)–(3.10) proves the proposition.

The convergence estimates for the remaining Ritz values θ′i, i = 1, . . . , s − 1, follow from
Corollary 3.2 by induction. Comparable estimates on the remaining s− 1 Ritz values, but
with respect to different spaces, have been used in Theorem 3.3 in [14] on the subspace
analysis of the preconditioned inverse iteration and in Theorem 3.1 in [19] on the block
steepest descent iteration.

Theorem 3.2. Let V be an s-dimensional subspace of the R
n. The Ritz vectors of

(A,M) in V are denoted by v1, . . . , vs and let V := [v1, . . . , vs] ∈ R
n×s. The associated

Ritz values are θi = ρ(vi) with θ1 ≤ . . . ≤ θs. Indexes ki are given so that θi ∈ (λki
, λki+1).
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The s smallest Ritz values of (A,M) in span{V, T (AV −MVΘ)} are denoted by θ′i
with θ′1 ≤ . . . ≤ θ′s. Then for each i ∈ {1, . . . , s} it holds that θ′i ≤ θi and either θ′i ≤ λki

or

0 <
∆ki,ki+1(θ

′
i)

∆ki,ki+1(θi)
≤

(
κi + γ(2− κi)

(2 − κi) + γκi

)2

with κi =
λki

(λn − λki+1)

λki+1(λn − λki
)
.(3.11)

Therein ∆p,q(θ) := (θ − λp)/(λq − θ).
The bound (3.11) cannot be improved in terms of the eigenvalues of (A,M) as for

each i the upper bound is attained for θi → λki
in the 3D invariant subspace associated

with the eigenvalues λki
, λki+1 and λn.

Proof. The proof is given by induction on the subspace dimension s. For a one-
dimensional subspace V = span{x} Theorem 1.1 proves the Ritz value estimate (3.11)
with ρ(x′) = θ′1.

For an s-dimensional subspace the Ritz vectors vi of (A,M) are arranged in the
columns of V = [v1, . . . , vs] =: [V (s−1), vs] ∈ R

n×s. Let θ′i(V
(s−1)) be the s − 1 smallest

Ritz values of (A,M) in

span{V (s−1), T
(
AV (s−1) −MV (s−1)Θ(s−1)

)
}, Θ(s−1) := diag(θ1, . . . , θs−1),

with θ′1(V
(s−1)) ≤ . . . ≤ θ′s−1(V

(s−1)). The induction hypothesis with respect to the
(s− 1)-dimensional space reads

0 ≤
∆ki,ki+1(θ

′
i(V

(s−1)))

∆ki,ki+1(θi)
≤

(
κ+ γ(2− κ)

(2− κ) + γκ

)2

with κ =
λki

(λn − λki+1)

λki+1(λn − λki
)
.

The Courant-Fischer variational principles show that these s − 1 smallest Ritz values
θ′i(V

(s−1)) decrease when span{V (s−1)} is enlarged to V , i.e.

θ′i(V
(s−1)) = min

U⊆span{V (s−1),T
(
AV (s−1)−MV (s−1)Θ(s−1)

)
}

dim(U)=i

max
y∈U\{0}

ρ(y)

≥ min
U⊆span{V,T (AV−MV Θ)}

dim(U)=i

max
y∈U\{0}

ρ(y) = θ′i.

Finally, ∆ki,ki+1(θ) is a monotone increasing function in θ so that

∆ki,ki+1(θ
′
i)

∆ki,ki+1(θi)
≤

∆ki,ki+1(θ
′
i(V

(s−1)))

∆ki,ki+1(θi)
≤

(
κ+ γ(2− κ)

(2− κ) + γκ

)2

,

which proves the proposition for the first s− 1 smallest Ritz values. For the Ritz value θs
Corollary 3.2 completes the proof.

The sharpness of the estimate (3.11) is a consequence of Theorem 1.1 since for θi ∈
(λki

, λki+1) the columns of V can be formed by the vector of poorest convergence in
Eki,ki+1,n and all other columns are taken as eigenvectors with indexes different form ki,
ki+1 and n. Then the subspace iteration behaves like the vectorial preconditioned steepest
descent iteration due to stationarity of the iteration in the eigenvectors.

Corollary 3.3 shows that the convergence estimate (3.11) cannot be improved in terms
of the eigenvalues without further assumptions on the subspace V . Hence cluster robust
convergence estimates, which should depend in some way on the ratio λi/λs+1, are not
provable in terms of the convergence measure ∆q,q+1 as used in Theorem 3.2. The nu-
merical experiments in Section 4 illustrate that the block preconditioned steepest descent
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Fig. 4.1. Contour lines of the three eigenfunctions of (4.1) corresponding to the three smallest
eigenvalues.

iteration behaves as a cluster robust iteration. In order to derive cluster robust conver-
gence estimates, additional assumptions are to be made: For instance the angle between
the iteration subspace and the invariant subspace has to be bounded.

Corollary 3.3. The Ritz value convergence estimate (3.11) cannot be improved in
terms of the eigenvalues λki

, λki+1 and λn and is attainable for θi → λki
in Eki,ki+1,n.

Proof. For θi ∈ (λki
, λki+1) let vi be anM -normalized vector in the invariant subspace

Eki,ki+1,n with ρ(vi) = θi. The remaining columns of V are filled with pairwise different
eigenvectors of (A,M) which are M -orthogonal to Eki,ki+1,n. Then a step of the block
steepest descent iteration, Algorithm 1, lets all the eigenvectors invariant. The conver-
gence of the ith column vi is exactly that of the vectorial preconditioned steepest descent
iteration as treated in Theorem 1.1 because the iteration is stationary in all eigenvectors.
The non-improvability of the convergence estimate in terms of the eigenvalues has already
been treated in Theorem 1.1.

4. Numerical experiments. The block preconditioned steepest descent iteration
is applied to the Laplacian eigenvalue problem

−∆u(x) = λu(x), x ∈ Ω :=
{(

r cos(ϕ), r sin(ϕ)
)
: r ∈ [0, 1], ϕ ∈

[
0, 2π

]}
(4.1)

on the unit circle with a slit along the positive abscissa. Homogeneous Dirichlet boundary
conditions are given on the boundary for r = 1 and on the upper side of the slit {(r, ϕ) :
r ∈ [0, 1], ϕ = 0}. Homogeneous Neumann boundary conditions are used on the lower
side of the slit. The numerical approximations of the eigenvalues and eigenfunctions can
be compared with the exact solutions of (4.1). The eigenfunctions are sin

(
αkϕ

)
Jαk

(ξk,lr);
see Fig. 4.1. Therein Jαk

is a Bessel function of first kind and fractional order [1] and
αk := 1

2k + 1
4 . The eigenvalues are the squares of the positive zeros ξk,l of Jαk

.
The operator eigenvalue problem is discretized by linear finite elements on a trian-

gle mesh. Our program code AMPE (Adaptive Multigrid Preconditioned Eigensolver)
in FORTRAN is an adaptive multigrid finite element code with an edge oriented error
estimator which uses linear and quadratic finite elements. All test computations have
been executed on a personal computer with an Intel Xeon 3.2GHz CPU and with a RAM
of 31.4GiB. Our finite element code on this computer can solve eigenvalue problems that
exceed 50 · 106 degrees of freedom. The program includes multigrid preconditioning with
Jacobi smoothing. The FORTRAN code is embedded in a Matlab GUI which allows an
easy and convenient usage of the program and the graphical presentation of its output.

Experiment I: In this first experiment the block preconditioned steepest descent iter-
ation is applied in a 3-dimensional subspace; we refer to this algorithm as PSD(s = 3).
Further, the eigenvalue problem is discretized on a series of uniform triangle meshes to
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Fig. 4.2. PSD(s = 3) nested iteration on uniform triangle meshes. Left: Computational costs until
a level is reached and finished (solid line); computation time on the current level (markers). Center:
Error of the eigenvalue approximations, i = 1 by a line with markers, i = 2 by a broken line and i = 3
by a solid line. Right: The initial triangulation.

which nested iteration is applied. The first grid level comprises 21 nodes from which 15 are
located on the Dirichlet boundary. This gives 6 initial degrees of freedom. On this coars-
est level the eigenvalue problem is solved exactly (aside from rounding errors). Piecewise
linear interpolation is used to prolongate the approximate eigenfunctions from one grid
level to the next refined level. The multigrid preconditioner is a V-cycle multigrid solver
with damped Jacobi-smoothing; the damping constant is ω = 2/3 and two pre-smoothing
and post-smoothing iterations are applied on each level.

The quality of the preconditioner is controlled by a stopping condition for the linear
system solver. For each Ritz vector the bound ‖A(Tr) − r‖2 < 10/n is tested. Therein
r denotes the residual of a Ritz vector, Tr is the preconditioned residual and n is the
dimension of the discrete problem on the current level. In most cases only one V-cycle is
required to reach this accuracy since the initial solution on a refined grid is the prolongation
of the solution from the coarser grid.

The stopping criterion for PSD(s = 3) is ‖r‖T = (rT Tr)1/2 < 10−10 where r runs
through the residuals Avi − ρ(vi)Mvi for the Ritz vectors v1, v2 and v3. This stopping
criterion is justified by the generalized Temple inequality (see Lemma 3 in Chapter 11 of
[3]), which is the first inequality in

ρ(x)
(
ρ(x)− λi

)(
λi+1 − ρ(x)

)

λiλi+1
≤ ‖r‖2A−1 ≤

1

1− γ
‖r‖2T if ρ(x) ∈ [λi, λi+1].

The second inequality follows with ‖I − TA‖A ≤ γ < 1. Hence ‖r‖2T is an upper bound
for the product of the relative distances of ρ(x) to the enclosing eigenvalues λi and λi+1.

The nested iteration is stopped on the level l = 12 with 50348033 nodes and 50319360
degrees of freedom. Figure 4.2 (left) shows that the computational costs increase more or
less linearly in the dimension of the problem which indicated the near optimal complexity

of the PSD(s = 3) solver. Figure 4.2 also shows the errors θ
(k)
i − λi, i = 1, 2, 3, for the

three smallest eigenvalues

λ1 = ξ20,1 ≈ 7.733337, λ2 = ξ21,1 ≈ 12.18714, λ3 = ξ22,1 ≈ 17.35078.

The error θ
(k)
1 −λ1 is relatively large since the associated eigenfunction has an unbounded

derivative at the origin. The next experiment shows that the approximation of this eigen-
function clearly profits from an adaptively generated grid.

Experiment II: Next we show that adaptive mesh generation with a posteriori edge
oriented error estimation similar to that in [15] results in much better approximations.
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n=1716, in [−1, 1]2

 
n=54064, in [−10−7, 10−7]2

 
n=165034, in [−10−12, 10−12]2

Fig. 4.3. Triangle meshes and enlargements around the origin with 1716, 54064 and 165034 nodes
(with 1628, 53387 and 163772 inner nodes). The associated depths of the triangulations are 17, 39 and
46. The positive axis r ≥ 0 and ϕ = 0 belongs to the boundary.

The error estimator computes the eigenvector residuals with respect to quadratic finite
elements for Ritz vectors which are represented by linear finite elements. The largest
(in modulus) components of the residual are used to select those edges which belong to
triangles that are to be refined.

Once again, the PSD(s = 3) solver is used. In order to compute a grid which allows
an optimal approximation of the eigenfunction associated with the smallest eigenvalue,
the error estimation and grid refinement aims at an optimal approximation of just this
eigenfunction. Figure 4.3 shows a relatively coarse triangulation of the unit circle and
sectional enlargements of finer triangulations around the origin, where the depth of the
triangulations takes its largest values due to the unbounded derivative (∂/∂r)Jαk

around
r = 0. The adaptive process generates highly non-uniform triangulations. Further details
of the adaptive process and its more or less linearly increasing costs (as a function of the
d.o.f) are shown in Figure 4.4. The resulting smallest Ritz values θ1, which approximate
the smallest eigenvalue λ1 ≈ 7.733337, are as follows:

Depth of triang. 1 30 43 57 68 73
Nodes 21 10709 108693 1185777 10961756 34157092
D.o.f. 6 10409 107630 1182184 10951337 34137627
θ1 12.95561 7.738704 7.733789 7.733379 7.733341 7.733338

In contrast to this, a uniform refinement results with a final depth 12 with 50348033 nodes
only in a poor approximation θ1 = 7.772233; a comparable quality of approximation can
be gained by the adaptive process on level 19 with 2377 nodes and θ1 = 7.762841.

Finally, the results of the PSD iteration to approximate the 15 smallest eigenvalues
in a 20-dimensional subspace are listed in Table 1.

Experiment III: Next the case of poorest convergence of the block preconditioned
steepest descent iteration is explored. Therefore, we use the final grid from Experiment
II with about 34.1 · 106 d.o.f. and apply the PSD(s = 3) iteration. According to Theorem
1.1 poorest convergence of the vectorial iteration PSD(s = 1) is attained in the invariant
subspace Ei,i+1,n. The subspace iteration behaves similarly. To show this we consider
subspaces which are spanned by a single nonzero vector from Ei,i+1,n whereas all the other
basis vectors are eigenvectors of (A,M) with indexes different from i, i + 1 and n. Then
block-PSD behaves like a vectorial iteration due to the stationarity in the eigenvectors.
Theorem 1.1 provides the convergence estimate for the single vector from Ei,i+1,n. Figure

4.5 shows in the intervals (λi, λi+1) the upper bounds
(
κ + γ(2 − κ)

)2
/
(
(2 − κ) + γκ

)2
(dashed lines) and the largest ratios ∆i,i+1(θ

′
i)/∆i,i+1(θi) for 1000 equispaced normalized

test vectors in Ei,i+1,n whose Rayleigh quotients equal θi. All this is done for equidistant
θi ∈ (λi, λi+1). In each interval [λi, λi+1) the estimate (3.11) is sharp, cf. Theorem 3.2,
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Fig. 4.4. Result of PSD(s = 3) adaptive eigensolver. Left: Computational costs: Total computation
time until # d.o.f. has been reached by solid line. Line with markers shows the computation time on the

current level. Center: Errors θ
(l)
i − λi for i = 1 by line with markers, i = 2 by broken line and i = 3 by

solid line. Right: Estimated residual norm for θ1 by solid line, estimate used for the stopping criterion
by broken line and actual residual norm ‖r‖2

T
/‖Tr‖A w.r.t. linear elements by line with markers.

k\l 1 2

0 7.733389 34.88339
1 12.18725 44.25893
2 17.35102 54.36164
3 23.19983 65.17971
4 29.71530 76.70204
5 36.88311
6 44.69164
7 53.13167
8 62.19503
9 71.87493

k\l 1 2

0 7.733342 34.88260
1 12.18715 44.25768
2 17.35080 54.35978
3 23.19943 65.17704
4 29.71460 76.69829
5 36.88199
6 44.69009
7 53.12939
8 62.19189
9 71.87073

k\l 1 2

0 7.733337 34.88252
1 12.18714 44.25756
2 17.35078 54.35960
3 23.19939 65.17677
4 29.71453 76.69790
5 36.88189
6 44.68994
7 53.12918
8 62.19159
9 71.87033

Table 1

The 15 smallest eigenvalues ξ2
k,l

of (4.1). Left: Ritz values in a 1047534-dimensional linear finite

element space. Center: Ritz values in a 10052735-dimensional linear finite element space. Right: “Exact”
eigenvalues of (4.1).

and can be attained for θi → λi.

Experiment IV: In this experiment the sharp single-step estimates (3.11) are compared
with multi-step estimates for the PSD(s = 3) iteration. For each grid level l with l > 1
the initial subspace V(0,l), which is the prolongation of the final subspace from the level
l− 1, is of sufficient quality so that the three Ritz values of (Al,Ml) in V(0,l) have reached
their “destination interval”, i.e.

θi(V
(0,l)) ∈ (λ

(l)
i , λ

(l)
i+1), i = 1, 2, 3,

so that the Ritz values θ
(k,l)
i (k is the iteration index on level l) do not leave this interval.

Therein, λ
(l)
i are the eigenvalues of (Al,Ml) with respect to the grid level l. Theorem 3.2

guarantees that limk→∞ θ
(k,l)
i = λ

(l)
i .

All this allows to apply the 1-step estimates

θ
(k+1,l)
i − λ

(l)
i

λ
(l)
i+1 − θ

(k+1,l)
i

≤

(
κ(l) + γ(2− κ(l))

(2 − κ(l)) + γκ(l)

)2
θ
(k,l)
i − λ

(l)
i

λ
(l)
i+1 − θ

(k,l)
i

=: σ(θ
(k+1,l)
i ), k=0, 1, . . . ,(4.2)

recursively, which yields the multistep estimate

θ
(k,l)
i − λ

(l)
i

λ
(l)
i+1 − θ

(k,l)
i

≤

(
κ(l) + γ(2− κ(l))

(2− κ(l)) + γκ(l)

)2k
θ
(0,l)
i − λ

(l)
i

λ
(l)
i+1 − θ

(0,l)
i

=: τ(θ
(k,l)
i ), k=1, 2, . . . .(4.3)
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Fig. 4.5. Poorest convergence of block preconditioned steepest descent iteration. Abscissa: Five
smallest eigenvalues according to Table 1. The dashed lines in the intervals (λi, λi+1) are the upper

bounds
(

κ + γ(2 − κ)
)2

/
(

(2 − κ) + γκ
)2

for γ =∈ {0, 0.1, . . . 0.9}. The curves are the largest ratios
∆i,i+1(θ

′

i)/∆i,i+1(θi) over 1000 equispaced test vectors in Ei,i+1,n whose Rayleigh quotients equal θi.

Therein, κ(l) is given by (3.11) after substitution of λi by λ
(l)
i for the relevant indexes i.

The parameter γ = ‖I − TA‖A on the quality of the preconditioner is approximated on
each grid level by computing the spectral radius of I − TA with the power method. For
this experiment we use again two steps of pre-/post-smoothing on each level with damped

(ω = 2/3) Jacobi-smoothing. This results in γ ≈ 0.78. The discrete eigenvalues λ
(l)
i are

estimated by extrapolation from the computed Ritz values.

Figure 4.6 shows the multistep bound (4.3) as a bold line, the 1-step bound as a
dotted line and the numerical result as a thin solid line. The 1-step estimate (4.2) is a
very good upper estimate. In all cases the multistep estimate (4.3) is a relatively rough
estimate. It accumulates the over-estimation of the error from step to step and suffers

from its inability to use the current θ
(k,l)
i on the right-hand side of the estimate in order

to improve the quality of the upper bound.

The ∆(θ)-ratio depends on the discrete eigenvalues λ(l) and decreases monotonically
for the iteration on each grid level; the ratio may increase after prolongation to a refined
grid level. The somewhat oscillating behavior of the ∆(θ)-ratio for λ2 in contrast to the
smoother behavior for λ1 reflects the fact that the error estimation and grid generation
is controlled by error estimates for the first eigenfunction. The second eigenfunction
also profits from the grid refinement (cf. Figure 4.4) but the ∆(θ)-ratio shows a stronger
variation for changing level index l.

5. Conclusion. This paper concludes the efforts for analyzing preconditioned gra-
dient iterations and their subspace variants with either fixed step length (case of inverse
iteration and preconditioned inverse iteration) or with with optimal step-length (case of
steepest descent and preconditioned steepest descent). Within the hierarchy of precondi-
tioned gradient iterations, as suggested in [13], these solvers are denoted as INVIT(k,s)
and PINVIT(k,s) with k = 1, 2 and subspace dimensions s ∈ N.

For all these iterative eigensolvers sharp convergence estimates have been derived
which have the common form

∆i,i+1(ρ(x
′)) ≤ σ2∆i,i+1(ρ(x))

with ∆i,i+1(ξ) = (ξ − λi)/(λi+1 − ξ) and convergence factors σ. The following sharp
convergence estimates have been gained:
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Fig. 4.6. Convergence history of the error ratios ∆
(l)
i,i+1(θ

(k,l)
i ) = (θ

(k,l)
i − λ

(l)
i )/(λ

(l)
i+1 − θ

(k,l)
i ) for

i = 1, 2 and PSD(3). The 1-step estimate (4.2) (broken line) is good estimate for the numerical worst-
case results (thin solid line); the multistep estimate (4.3) (bold line) accumulates the over-estimation
from step to step.
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Iterative Eigensolver Convergence factor Ref.

Inverse iteration σ = λi

λi+1
[16]

Preconditioned inverse iteration
σ = γ + (1 − γ) λi

λi+1

[10]
Block preconditioned inverse iteration [14]

Steepest descent σ = κ
2−κ , κ = λi(λn−λi+1)

λi+1(λn−λi)
[18]

Precond. steepest descent
σ = κ+γ(2−κ)

(2−κ)+γκ , κ = λi(λn−λi+1)
λi+1(λn−λi)

[17]
Block precond. steepest descent here

Scientific efforts for the future are aimed at a convergence analysis of the important
locally optimal preconditioned conjugate gradient (LOPCG) iteration [9]. As the conver-
gence behavior of the LOPCG eigensolver has been observed to behave similarly to the
conjugate gradient iteration for linear systems, sharp convergence estimates are highly
desired.
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