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CONVERGENCE ANALYSIS OF GRADIENT ITERATIONS

FOR THE SYMMETRIC EIGENVALUE PROBLEM

KLAUS NEYMEYRα, EVGUENI OVTCHINNIKOVβ AND MING ZHOUα ∗

Abstract. Gradient iterations for the Rayleigh quotient are simple and robust solvers to determine
a few of the smallest eigenvalues together with the associated eigenvectors of (generalized) matrix eigen-
value problems for symmetric matrices. Sharp convergence estimates for the Ritz values and Ritz vectors
are derived for various steepest descent/ascent gradient iterations. The analysis shows that poorest con-
vergence of the eigenvalue approximations is attained in a three-dimensional invariant subspace; explicit
convergence estimates are then derived by means of a mini-dimensional analysis.

Key words. Gradient iteration, steepest descent/ascent, Rayleigh quotient, preconditioner, elliptic
eigenvalue problem.

1. Introduction. Consider the generalized matrix eigenvalue problem

Axi = λiMxi

with a symmetric matrix A ∈ R
n×n and a symmetric and positive definite matrix M ∈

R
n×n to be given. A typical background is an eigenvalue problem for a self-adjoint partial

differential operator. Usually the finite element discretization of the operator eigenvalue
problem results in large and sparse matrices A and M which are called the discretiza-
tion matrix and the mass matrix. For an elliptic partial differential operator positive
definiteness of A is attainable.

The eigenpairs are denoted by (λi, xi) and are enumerated so that λ1 ≤ λ2 ≤ . . . ≤ λn.
Here we consider the problems to compute approximations either of the smallest or of the
largest eigenvalue together with the associated eigenvectors. In order to solve this (partial)
eigenproblem the Rayleigh quotient

ρ(x) = (x,Ax)/(x,Mx), x 6= 0

can be minimized/maximized by means of a gradient iteration, since λ1 = ρ(x1) =
minx 6=0 ρ(x) and λn = ρ(xn) = maxx 6=0 ρ(x). The steepest descent iteration computes
a sequence of iterates with decreasing Rayleigh quotients by successive corrections in the
negative gradient direction of the current iterate

−∇ρ(x) = −2(Ax− ρ(x)Mx)/(x,Mx).

The steepest ascent iteration uses the positive gradient for the maximization of the
Rayleigh quotient. This paper deals with steepest descent/ascent gradient iterations for
symmetric (and sometimes positive definite) eigenproblems.

Convergence rate estimates for steepest descent/ascent iterations for the Rayleigh
quotient have a long history: The classical asymptotic convergence rate estimates go back
to Kantorovich [4, 5] as well as to Hestenes and Karush [3]. Non-asymptotic estimates
are given by Prikazchikov [15], Zhuk and Bondarenko [20] as well as by Knyazev and
Skorokhodov [6, 8]. See Yang [18] for a survey on conjugate gradient iterations for the
symmetric eigenvalue problem.

Gradient type iterations can also be considered with respect to general geometries, as
pointed out by Samokish [16] and D’yakonov [2], this amounts to preconditioning. The
importance of such a preconditioning resides in its considerable convergence acceleration;
in the context of discretized elliptic operator eigenvalue problems such a preconditioning
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can be realized, for instance, by multi-grid or multi-level iterations. For a symmetric
positive definite matrix B the B-gradient reads

(1.1) ∇Bρ(x) = B−1∇ρ(x).

By using B-gradients a preconditioned gradient scheme can be constructed. The con-
vergence analysis of such B-gradient (preconditioned) eigensolvers still has several open
problems. Non-asymptotic estimates are known only for the most simple preconditioned
gradient iteration with certain (fixed) step sizes; some of these estimates are sharp with
respect to specific parameters, see Samokish [16], Perdon and Gambolati [14], Ovtchin-
nikov [11] and [7]. For the efficient conjugate-gradient-like iteration LOPCG [1] these
(sharp) estimates serve as upper convergence estimates, which do not reflect the cg-like
optimal behavior. One exception is Theorem 4.2 from [12], which gives an upper bound
for the eigenvalue error reduction over two consecutive iterations of CG algorithms that
use the so-called Jacobi orthogonal correction equation, see Sleijpen and van der Vorst
[17], for conjugation (this estimate applies to LOPCG as well, which implicitly uses such
conjugation).

The intention of this paper is to prove convergence estimates for a variety of steepest
descent and ascent gradient iterations which reflect limit cases of preconditioned gradient
iterations. Most of the available convergence estimates for preconditioned steepest descent
iteration give upper bounds on the error reduction which are smallest when the inverse
of A is used for preconditioning. One aim of this paper is to demonstrate the ample
difference between the two limit cases - the convergence without preconditioning (working
with the Euclidean gradient) and preconditioning by the inverse of A. In this way the
paper should provide a better theoretical understanding of more general preconditioned
gradient iterations.

This paper has a predecessor in the paper of Knyazev and Skorokhodov [8] and over-
comes its limitation that the convergence analysis for the eigenvalue approximations is
restricted to the extremal eigenvalues; in [8] is assumed that the Rayleigh quotient of the
initial iterate is located between the extremal eigenvalue and the next neighboring eigen-
value. The analysis in [8] and the one given here both work with a mini-dimensional proof
technique. In [8] the steepest ascent scheme (with M = I) is analyzed by investigating
the convergence behavior of the subspace K of the 3D space H3 with

K = span{x,Ax}, H3 = span{x1, x, Ax},

where x1 is an eigenvector associated with λ1. The current paper uses, once again, a
mini-dimensional analysis. Here a 3D subspace is used, which is an invariant subspace
of (A,M) since the new Theorem 2.1 below shows that the extremal convergence of the
Ritz values (i.e. the fastest or slowest convergence) is attained in an invariant subspace.
This invariant subspace approach enables relatively simple (compared to [8]) geometric
proofs for the convergence estimates of various cases of steepest descent/ascent both for
the Euclidean gradient and for the A-gradient iterations.

The paper is structured as follows: Section 2 shows that the slowest (and also the
fastest) convergence of the eigenvalue approximations for certain steepest ascent and
steepest descent iterations are attained in three-dimensional invariant subspaces of A.
In Section 3 sharp convergence rate estimates are derived by means of a mini-dimensional
analysis which is based on a simple geometric construction. In Section 4 the estimates
from the low dimensional subspace are embedded into the full space R

n.

2. Extremal convergence of gradient iterations. A basis transformation allows
to assume that A = diag(λ1, . . . , λn) and M = I. This assumption does not oversimplify
the problem as we do not access to the diagonal elements of A. Further let λ1 < λ2 < . . . <



Gradient iterations for the symmetric eigenvalue problem 3

λn since multiple eigenvalues do not change the convergence estimates derived below; see
the appendix in [10] for the analytical argument.

The steepest descent/ascent B-gradient iteration for the Rayleigh quotient ρ(·) reads

x′ = x+ α±∇Bρ(x)(2.1)

with the optimal step length parameter α− (α+) minimizing (maximizing) the Rayleigh
quotient in the given affine subspace. In the following analysis α± are always bounded.

Here B-gradients are considered only for B ∈ {I, A}. If B = A, then regularity of A is
required. (Formally an A-gradient is correctly defined only for symmetric positive definite
A.) The standard Euclidean gradient iteration works with B = I and the limit case of
“exact-inverse preconditioning” uses B = A. For these cases the maximization/minimiza-
tion of ρ(·) amounts to the computation of the Ritz pairs of A with respect to the column
space of either [x,Ax] or [x,A−1x].

Theorem 2.1. Let L(λ) := {x ∈ R
n; ρ(x) = (x,Ax)/(x, x) = λ} be the level set of

the Rayleigh quotient of A with λ being different from the eigenvalues of A and let n ≥ 3.
Consider the gradient iteration

x′ = Aσ(x+ αAx), σ ∈ {0,−1}

with optimal step length α maximizing (minimizing) the Rayleigh quotient ρ(x′). For
σ = −1 regularity of A is assumed. If ρ(x′) takes an extremum in x ∈ L(λ), then x has
at most three non-zero eigenvector components.

Proof. Let w = Aσ(x + αAx) be a Ritz vector of A in Vσ = span{Aσx,Aσ+1x}. By
definition of a Ritz vector it holds that Aw − ρ(w)w ⊥ Vσ and thus ∇ρ(w) ⊥ Vσ.

Let x(t) be an arbitrary smooth curve in L(λ) and let w(t) = Aσx(t) + α(t)Aσ+1x(t)
be the associated curve of extremum points of the gradient iteration. Then a necessary
condition for an extremum of ρ(w(t)) in t = t∗ with x∗ = x(t∗) and w∗ = w(t∗) reads

0 =
d

dt
ρ(w(t))

∣
∣
∣
t=t∗

= (∇ρ(w∗),

(
d

dt

[

Aσx(t) + α(t)Aσ+1x(t)
])

t=t∗
).

For ease of notation the star is always omitted in the sequel. We get that

(2.2)

0 = (∇ρ(w), Aσ ẋ+ α̇Aσ+1x+ αAσ+1ẋ)

=
2

(w,w)
(Aw − ρ(w)w,Aσ(I + αA)ẋ) since ∇ρ(w) ⊥ Vσ

=
2

(w,w)
((A − ρ(w)I)A2σ(I + αA)2x
︸ ︷︷ ︸

=:z

, ẋ)

where the dot notation is used for derivatives within the extremum point, i.e. ẋ =
(d/dt)x(t) |t=t∗ . Furthermore, for any smooth curve x(t) in the level set L(λ) it holds that

0 =
d

dt
ρ(x) = (∇ρ(x), ẋ) =

2

(x, x)
(Ax − ρ(x)x, ẋ),

which means that the gradient ∇ρ(x) is orthogonal to the tangent plane of L(λ) in x
which is spanned by all possible tangent vectors ẋ. Therefore z in (2.2) and Ax − ρ(x)x
are collinear vectors, i.e. z = ν(A − ρ(x)I)x for a ν ∈ R. The last equation for σ = 0
can be rewritten as pa(A)x = 0 and for σ = −1 we get after multiplication with A2 that
pb(A)x = 0; pa(·) and pb(·) are third order polynomials.

For diagonal A = diag(λ1, . . . , λn) we get from pa,b(A)x = 0 for each i ∈ {1, . . . , n}
that pa,b(λi) = 0 or xi = 0. Since pa,b(·) has at most three zeros, the vector x ∈ L(λ) can
have at most three non-zero eigenvector components.
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Thm. 2.1 can easily be generalized to s-step steepest descent/ascent iterations in the
Krylov subspaces K(x,A, j) or in K(x,A−1, j). Further the Rayleigh-Ritz approxima-
tions can also be considered with respect to A−1. In all these cases the fastest/slowest
convergence is attained in low-dimensional invariant subspaces.

3. Mini-dimensional analysis. Next we derive a convergence estimate for the
smallest Ritz value of A in the space span{x,Ax} and an estimate for the associated
Ritz vector. Due to Thm. 2.1 the poorest convergence of the Ritz values is attained in a
3D invariant subspace of A. Let

Ej,k,l := span{ej, ek, el}(3.1)

be such a subspace where ei is the ith column of the n-by-n identity matrix. For the
associated eigenvalues with λj < λk < λl let ∆p,q(θ) := (θ−λp)/(λq − θ). Further ∠(y, z)
denotes the acute angle enclosed by span{y} and span{z}.

In Sec. 4, we apply these mini-dimensional estimates derived below in the full n-
dimensional space, which results in the desired convergence estimates for the gradient
iterations.

Lemma 3.1. Let x ∈ L(λ) ∩ Ej,k,l with the associated eigenvalues λj < λk < λl. If
λj < λ < λk, then the smaller Ritz value λ′ of A in span{x,Ax} and the associated Ritz
vector x′ satisfy

∆j,k(λ
′)

∆j,k(λ)
≤

(
κ

2− κ

)2

,
tan∠(x′, ej)

tan∠(x, ej)
≤ κ with κ =

λl − λk

λl − λj
.

If A is a positive definite matrix, then an A-angle ratio is bounded, once again, by κ

tan∠A(x
′, ej)

tan∠A(x, ej)
≤ κ.

Proof. Next we use the indexes (1, 2, 3) as representatives for (j, k, l) to improve the
readability. The associated eigenvalues are λ1 < λ2 < λ3. The vectors x and x′ in E1,2,3
can be scaled (any non-zero scaling does not change estimates) so that

x = e1 + α0e2 + β0e3, x′ = e1 + α1e2 + β1e3.

(Note that (x′, e1) 6= 0. Otherwise it would hold that ρ(x′) ≥ λ2, which contradicts the
Courant variational principle.) Then x and x′ are elements of the affine space E1 :=
e1 + span{e2, e3}. Further x

′ is an element of the level set (a cone)

L(λ′) = {z ∈ E1,2,3 ; ρ(z) = λ′}.

The intersection of L(λ′) and E1 is an ellipse, see Fig. 3.1. Figure 3.1 also shows a broken
line which is the intersection of the two-dimensional space span{x,Ax} and E1; this line
is tangential to the ellipse in x′.

The intersection of this tangent and e1 + span{e2} is denoted by y and has the form
y = e1 + θe2. Next we compute θ. Therefore in span{x,Ax} the vector x − Ax/λ3 =
(1−λ1/λ3)e1 +(1−λ2/λ3)α0e2 is formed, which is a multiple of y. The normalization of
its first component gives

θ =
1− λ2/λ3

1− λ1/λ3

α0 = κα0 with κ =
λ3 − λ2

λ3 − λ1

< 1.

Due to λ2 < λ3 the larger semi-axis of the ellipse is oriented along the e2 axis; this implies
the first inequality in

tan2 ∠(x′, e1) ≤ tan2 ∠(y, e1) = κ2α2
0 ≤ κ2(α2

0 + β2
0) = κ2 tan2 ∠(x, e1),
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e1

e2
e3

y
xx′

Fig. 3.1. The cone L(λ′) and iterates x, x′.

p2

p3

ϕ

Px

Px′

Py

P ȳ

Fig. 3.2. Geometry in the plane PE1.

which proves the tangent estimate.
In the arguments given above one can scale the horizontal and the vertical coordinates

(in the plane E1, see Fig. 3.1) without invalidating the estimate for the tangents as long
as the horizontal semi-axis of the ellipse remains not less than the length of the vertical
semi-axis. Furthermore, in the particular case of the ellipse becoming a circle, the estimate
improves, as we are going to show next, which will deliver the estimate for the Ritz values.
First we introduce a coordinatization of the affine plane E1

z = e1 + αe2 + βe3 → Pz = (α, β)T .

Hence the tangent estimate from above can be written as ‖Px′‖2 ≤ κ2‖Px‖2 where ‖ ·‖ is
the Euclidean norm. A rescaling of the axes complies with the introduction of a weighted
norm ‖(α, β)T ‖ω := (ω2α

2 + ω3β
2)1/2 with ω2, ω3 > 0. A horizontal semi-axis which

is not smaller than the vertical semi-axis is guaranteed by (ω3/ω2) ≤ (a2/b2). Therein

a =
(
(λ′ − λ1)/(λ2 − λ′)

)1/2
and b =

(
(λ′ − λ1)/(λ3 − λ′)

)1/2
are the lengths of the

semi-axes of the ellipse L(λ′) ∩ E1.
Then ‖Px′‖2ω ≤ κ2‖Px‖2ω holds, since

ω2α
2
1 + ω3β

2
1 ≤ ω2

(
α2
1 +

a2

b2
β2
1

)
= ω2a

2 ≤ ω2κ
2α2

0 ≤ κ2(ω2α
2
0 + ω3β

2
0).

Next the limit case ω2 = 1 and ω3 = (a2/b2), which transforms the ellipse into a
circle, is analyzed. We call this limit norm the D-norm with D = diag(1, a2/b2) so that
‖Px′‖2D ≤ κ2‖Px‖2D. Next we derive an improved estimate by determining the minimum
of ‖Px‖2D/‖Px′‖2D. To this end let p2 = (1, 0)T , p3 = (0, 1)T ∈ PE1 and ϕ be the acute

D-angle enclosed by span{p2} and span{Px′}. Further let P ȳ =
(
0, κβ0/(κ− 1)

)T
be the

E1-representation of the intersection ȳ of the tangent and e1+span{e3}, whose components
can easily be computed like those of y. Then Px′ is located on the line segment connecting
Py and P ȳ and its components can be expressed by (α1, β1)

T = (1 − τ)Py + τP ȳ =
(
(1− τ)κα0, τκβ0/(κ− 1)

)T
for some τ ∈ (0, 1), so that

sgn(α0) = sgn(κα0) = sgn(α1), sgn(β0) = −sgn
(
κβ0/(κ− 1)

)
= −sgn(β1),

since κ ∈ (0, 1). Fig. 3.2 shows the case α0 > 0, β0 > 0.
The D-orthogonality Px′ ⊥D Px− Px′ implies

cos(ϕ) =
‖Px′‖D
‖Py‖D

=

√

α2
1 + β2

1
a2

b2

|κα0|
=

a

κ|α0|
,

sin(ϕ) = cos(π/2− ϕ) =
‖Px′‖D
‖P ȳ‖D

=

√

α2
1 + β2

1
a2

b2

a
b |κβ0/(κ− 1)|

=
(1− κ)b

κ|β0|
.

(3.2)
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Therewith the ratio ‖Px‖2D/‖Px′‖2D can be expressed as follows

‖Px‖2D
‖Px′‖2D

=
α2
0 + β2

0a
2/b2

a2
= (α0/a)

2 + (β0/b)
2 =

1

κ2 cos2(ϕ)
+

(1− κ)2

κ2 sin2(ϕ)
.

Insertion of sin2(ϕ) = t/(1 + t) and cos2(ϕ) = 1/(1 + t) with t = tan2(ϕ) gives

‖Px‖2D
‖Px′‖2D

=
(1 + t)(t+ (1− κ)2)

tκ2
=: f(t).

By differentiation one sees that the unique minimum of f(t) is taken in t = 1− κ so that

‖Px‖2D
‖Px′‖2D

≥ f(1− κ) =

(
2− κ

κ

)2

.

This estimate can be interpreted as a convergence bound for the Ritz value by noting
that ‖Px′‖2D = a2 = (λ′−λ1)/(λ2−λ′) = ∆1,2(λ

′) and by showing that ‖Px‖2D ≤ ∆1,2(λ).
To see the latter consider the intersection of L(λ) ∩ E1,2,3 with E1, which is an ellipse
through x. Thus

α2
0

ā2
+

β2
0

b̄2
= 1 with ā2 =

λ− λ1

λ2 − λ
, b̄2 =

λ− λ1

λ3 − λ
.

Hence λ′ ≤ λ implies a2/b2 ≤ ā2/b̄2 so that

‖Px‖2D = α2
0 +

a2

b2
β2
0 ≤ α2

0 +
ā2

b̄2
β2
0 = ā2 = ∆1,2(λ).

For a positive definite matrix A the A-angle estimate is proved as follows

tan2 ∠A(x
′, e1) =

λ2

λ1

α2
1 +

λ3

λ1

β2
1 =

λ2

λ1

(

α2
1 +

λ3

λ2

β2
1

)

≤
λ2

λ1

(

α2
1 +

a2

b2
β2
1

)

≤
λ2

λ1

tan2 ∠(y, e1) =
λ2

λ1

κ2α2
0 ≤ κ2 λ2

λ1

(

α2
0 +

λ3

λ2

β2
0

)

= κ2 tan2 ∠A(x, e1).

3.1. An improved estimate for the eigenvector error. The convergence esti-
mate for the Ritz vectors, as given in Lemma 3.1, can be further improved. However,
the analysis is lengthy and complicated. Next a short outline is given where the indexes
(1, 2, 3) are used as representatives for (j, k, l).

First the D-angle ϕ can be expressed in terms of α1 and β1 as |α1| = a cos(ϕ) and
|β1| = b sin(ϕ) since

cos(ϕ) =
|(p2, Px′)D|

‖p2‖D‖Px′‖D
=

|α1|
√

α2
1 + β2

1
a2

b2

=
|α1|

a
, sin(ϕ) =

√

1− cos2(ϕ) =
|β1|

b
,(3.3)

where the ellipse equation z22/a
2 + z23/b

2 = 1 is used for the sin(ϕ) equation.
By using (3.2), (3.3) and

ν :=
λ2 − λ′

λ3 − λ′
= b2/a2, t := tan2(ϕ), ξ :=

λ2 − λ1

λ3 − λ1

= 1− κ

we get for the ratio tan2 ∠(x′, e1)/ tan
2
∠(x, e1) that

tan2 ∠(x′, e1)

tan2 ∠(x, e1)
=

α2
1 + β2

1

α2
0
+ β2

0

=
(1− ξ)2t(1 + νt)

(1 + t)2(ξ2ν + t)
=: f(ν, t).
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Lemma 3.1 proves κ2 as an upper bound for f(ν, t); and in fact we find for ν ∈ (0, ξ),
t > 0, that limν→0,t→0 f(ν, t) = (1− ξ)2 = κ2.

However an extremum taken in (ν, t) = (0, 0) is not admissible. To see this we start
with ρ(x) < λ2, which implies a bound for β2

0 as follows

λ1 + λ2α
2
0 + λ3β

2
0

1 + α2
0 + β2

0

= ρ(x) < λ2 ⇔ β2
0 <

λ2 − λ1

λ3 − λ2

=
1− κ

κ
.

Combining this bound with (3.2) one gets

b2

sin2(ϕ)
<

κ

1− κ
⇔

1− ξ

ξ

t

1 + t
> b2 =

ξ − ν

1− ξ
⇔ ν > ν̄(t) :=

ξ2 + 2ξt− t

ξ + ξt
.

The insertion of (ν, t) = (0, 0) in the last inequality gives a contradiction.
The further analysis (by using the constraining inequalities derived above) shows that

the maximum of tan2 ∠(x′, e1)/ tan
2
∠(x, e1) in t for fixed ξ under the given constraints

equals the maximum of

g(t, ξ) := f(ν̄(t), t) =
(ξ + ξt+ ξ2t− t2 + 2ξt2)(1− ξ)2t

ξ(ξ3 − ξt+ 2ξ2t+ t+ t2)(1 + t)2
(3.4)

with

0 < t <

{

ξ2/(1− 2ξ) if ξ ∈ (0, 1

3
),

ξ if ξ ∈ [ 1
3
, 1).

One can rewrite (3.4) with u = t/ξ in the more intuitive form

g(t, ξ) = g̃(u, ξ) = (1− ξ)2
u

(1 + ξu)2
1 + (ξ2 + ξ)u + (2ξ − 1)ξu2

ξ2 + (1 + (2ξ − 1)ξ)u+ ξu2
.

The following lemma rests upon an improved estimation of g(t, ξ). For its (technical)
proof, see the doctoral thesis of Ming Zhou [19].

Lemma 3.2. By using the assumptions and the notation of Lemma 3.1 let

S(κ) :=
κ

2− κ
· (1− κ) + κ · κ =

κ(1 + κ− κ2)

2− κ
for κ ∈ (0, 1),(3.5)

which is a convex combination of κ/(2− κ) and κ so that S(κ) < κ.
If λj < λ < λk, then the Ritz vector x′ associated with the smaller Ritz value λ′ of A

in span{x,Ax} satisfies

tan∠(x′, ej)

tan∠(x, ej)
≤ S(κ) with κ =

λl − λk

λl − λj
.

The numerical computation of the maximum in t of g(t, ξ) = g(t, 1− κ) for κ ∈ (0, 1)
illustrates the attainable improvement. Figure 3.3 shows this sharp upper bound and also
the bounds κ and S(κ). The improved bound of Lemma 3.2 allows to improve the Ritz
vector convergence estimates in Thm. 4.1 below.

4. Convergence estimates for gradient iterations. The next theorem, which is
the central result of this paper, can be interpreted in two ways. First Thm. 4.1 can be un-
derstood as a convergence theorem for Euclidean- and A-gradient steepest descent/ascent
iterations for symmetric (positive definite) matrices A ∈ R

n×n. Second, Thm. 4.1 pro-
vides (sharp) estimates for the Ritz values of A and the associated Ritz vectors in the
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Fig. 3.3. Bound κ, improved bound S(κ) and numerically computed sharp bound.

two-dimensional Krylov subspaces span{x,Ax} and also span{x,A−1x}. The steepest
descent (ascent) estimates are estimates on the smallest (largest) Ritz values and the as-
sociated Ritz vectors. These two approaches are equivalent; the proposition of Thm. 4.1
reflects both aspects. The theorem applies to non-diagonal symmetric matrices A; how-
ever using a diagonalizing basis improves the readabilty of the analysis (see Sec. 2). If
one assumes a non-diagonal matrix A in Thm. 4.1, the standard basis vectors e1 and en
have to be substituted by the respective eigenvectors x1 and xn of A. The proof of the
theorem rests upon an application of the mini-dimensional convergence estimates from
Sec. 3 in the full vector space R

n by assigning the index triplets (i, j, k) to the specific
indexes between 1 and n.

Theorem 4.1. Let x ∈ R
n with λ = ρ(x) ∈ (λi, λi+1) for a i ∈ {1, . . . , n − 1}.

Further let x′ the new iterate Euclidean- or A-gradient steepest descent/ascent iteration
so that x′ is a Ritz vector in span{x,Ax} or span{x,A−1x}; λ′ := ρ(x′) is the associated
Ritz value.

1. Estimates on the Ritz approximations of A in span{x,Ax}:
The steepest descent iteration (2.1) using the gradient ∇ρ(x) satisfies the
following estimate: Either λ′ := ρ(x′) ≤ λi or it holds that

0 <
∆i,i+1(λ

′)

∆i,i+1(λ)
≤

(
κ

2− κ

)2

with κ =
λn − λi+1

λn − λi
.

The bound can be attained for λ → λi in the 3D invariant subspace Ei,i+1,n, see
(3.1). If 0 < tan∠(x, e1) < ∞, then the associated Ritz vector x′ satisfies

tan∠(x′, e1)

tan∠(x, e1)
≤ κ with κ =

λn − λ2

λn − λ1

.

For the steepest ascent iteration is holds either λ′ ≥ λi+1 or

0 <
∆i+1,i(λ

′)

∆i+1,i(λ)
≤

(
κ

2− κ

)2

with κ =
λi − λ1

λi+1 − λ1

.

The bound can be attained for λ → λi+1 in E1,i,i+1. If 0 < tan∠(x, en) < ∞, then
the Ritz vector x′ fulfills

tan∠(x′, en)

tan∠(x, en)
≤ κ with κ =

λn−1 − λ1

λn − λ1

.

2. Estimates on the Ritz approximations of A in span{x,A−1x}:

Let A ∈ R
n×n be a positive definite matrix. The steepest descent iteration

(2.1) using the gradient ∇Aρ(x) = A−1∇ρ(x) satisfies the following estimate:
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Either λ′ ≤ λi or it holds that

0 <
∆i,i+1(λ

′)

∆i,i+1(λ)
≤

(
κ

2− κ

)2

with κ =
λi(λn − λi+1)

λi+1(λn − λi)
.

The bound can be attained for λ → λi in Ei,i+1,n. If 0 < tan∠(x, e1) < ∞, then
the associated Ritz vector x′ satisfies

tan∠(x′, e1)

tan∠(x, e1)
≤ κ with κ =

λ1(λn − λ2)

λ2(λn − λ1)
.

For the steepest ascent iteration is holds either λ′ ≥ λi+1 or

0 <
∆i+1,i(λ

′)

∆i+1,i(λ)
≤

(
κ

2− κ

)2

with κ =
λi+1(λi − λ1)

λi(λi+1 − λ1)
.

The bound can be attained for λ → λi+1 in E1,i,i+1. If 0 < tan∠(x, en) < ∞, then
the Ritz vector x′ fulfills

tan∠(x′, en)

tan∠(x, en)
≤ κ with κ =

λn(λn−1 − λ1)

λn−1(λn − λ1)
.

Proof. Case 1 - steepest descent: Let λ = ρ(x) ∈ (λi, λi+1). Then by Thm. 2.1
poorest convergence is attained in a 3D invariant subspace; Lemma 3.1 proves in Ej,k,l the
estimate

∆j,k(λ
′)

∆j,k(λ)
≤

(
κ

2− κ

)2

with κ =
λl − λk

λl − λj
.

It holds either that λj ≤ λi < λ < λi+1 ≤ λk < λl or alternatively that λj < λk ≤
λi < λ < λi+1 ≤ λl. In the latter alternative the smallest Ritz value λ′ in Ej,k,l due to
the variational principles satisfies that λ′ < λk ≤ λi, which is the first alternative in the
proposition. (However, the estimate also holds for negative ∆i,i+1(λ

′) trivially.) Next we

analyze the first alternative. The upper bound
(
κ/(2− κ)

)2
in Lemma 3.1 is a monotone

increasing function in κ ∈ (0, 1). One has to determine the maximal κ in order to find the
convergence estimate. Further, κ is an increasing function in λj and λl and a decreasing
function in λk. Hence the maximum is taken in λj = λi, λk = λi+1 and λl = λn. This
proves that

κ̃ := maxκ =
λn − λi+1

λn − λi

is the correct bound. For λ → λi this bound can be attained in Ei,i+1,n, which is a result
of the analysis in Lemma 3.1.

Next the convergence estimate for the Ritz vector is proved. However, no pendant of
Thm. 2.1 is available, i.e. we do not have a subspace of poorest convergence for the Ritz
vectors. Instead we use the subspace U := span{e1, x, Ax}. If x is not an eigenvector,
then dim(U) ≥ 2; dim(U) = 2 is a trivial case in which steepest descent converges in a
single step to an eigenvector. So the only relevant case is dim(U) = 3.

First (e1, λ1) is a Ritz pair of A with respect to U . Let θ2 and θ3 be the remaining
Ritz values so that λ1 ≤ θ2 ≤ θ3. It is easy to show that λ1 < θ2 < θ3. The associated
normalized Ritz vectors are used to form the columns of the orthonormal matrix U =
[e1, v2, v3] ∈ R

n×3. These Ritz vectors diagonalize A on U so that

UTAU = diag(λ1, θ2, θ3), UTU = I3.
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Next let V := span{x,Ax} ⊂ U . By construction the iterate x′ ∈ V is a Ritz vector of A
since ρ(x′) = min{ρ(z); 0 6= z ∈ V}. Moreover, x′ is a Ritz vector of Ā = PAP with the
orthogonal projection P = UUT on U . To show this, note that Px′ = x′ and Pz = z for
all z ∈ V so that

0 = (Ax′ − ρA(x
′)x′, z) = (APx′ − ρA(Px′)Px′, P z) = (Āx′ − ρĀ(x

′)x′, z).

Hence the eigenvector-residual of x′ w.r.t. Ā is orthogonal to V .
This justifies (after a change of the basis) the application of Lemma 3.1 to UT ĀU =

UTAU = diag(λ1, θ2, θ3). So we get (see Lemma 3.1 and note that the tangent estimate
also holds under the condition 0 < tan∠(x, ej) < ∞)

tan∠(x′, e1)

tan∠(x, e1)
≤ κ̃ with κ̃ =

θ3 − θ2
θ3 − λ1

.

Further λ2 ≤ θ2 < θ3 ≤ λn shows 0 < κ̃ ≤ κ = (λn − λ2)/(λn − λ1) < 1. Hence we
conclude

tan∠(x′, e1) ≤ κ̃ tan∠(x, e1) ≤ κ tan∠(x, e1).

Case 1 - steepest ascent: The proof succeeds by applying the result derived above to
−A. The associated substitution is (λ1, λi, λi+1, λn) → (−λn,−λi+1,−λi,−λ1).
Case 2 - steepest ascent: The steepest descent analysis of case 1 is applied to the inverse
matrix A−1 and to the subspace span{y,A−1y} with y := A1/2x. For Ṽ := [x,A−1x] and
W := [y,A−1y] with W = A1/2Ṽ it holds that

Ṽ TAṼ zi = θiṼ
T Ṽ zi ⇔ WTA−1Wzi =

1

θi
WTWzi.

Any Ritz pair (θi, Ṽ zi) of A in span{Ṽ } turns into a Ritz pair (1/θi,Wzi) of A−1 in
span{W}. Further we get ρA(x) = 1/ρA−1(y). Thus the replacement A → A−1 results in
the substitution

(λi, λi+1, λn, λ, λ
′) → (λ−1

i+1
, λ−1

i , λ−1

1
, λ−1, λ′−1

).

This substitution lets the ratio ∆i,i+1(λ
′)/∆i,i+1(λ) unchanged and results in

λn − λi+1

λn − λi
→

λi+1(λi − λ1)

λi(λi+1 − λ1)
.

This proves the Ritz value estimate.
For a positive definite matrix A and y′ := A1/2x′ Lemma 3.1 proves the A−1-angle

estimate

tan∠A−1(y′, en)

tan∠A−1(y, en)
≤

λ−1

1 − λ−1

n−1

λ−1

1 − λ−1
n

=
λn(λn−1 − λ1)

λn−1(λn − λ1)
.

Direct computation shows that ∠A−1(y′, en) = ∠(x′, en). This proves the Ritz vector
estimate.
Case 2 - steepest descent follows from case 1 (steepest ascent) by using the arguments
used above to prove the first part of case 2.

5. Conclusion. Gradient iterations for the Rayleigh quotient are basic and (with
respect to a proper geometry) potentially fast iterations to compute approximations of
the smallest/largest eigenvalue and the corresponding eigenvector. In its most simple form
a gradient iteration only needs a computer storage for two vectors so that extremely large
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eigenproblems (e.g. those for finite element discretization matrices) can be treated. In this
paper convergence estimates for the steepest descent/ascent iterations for the Rayleigh
quotient have been derived. The analysis involves the Euclidean gradient ∇ρ(x) and also
the A-gradient A−1∇ρ(x), which is the correction direction of an ideally preconditioned
gradient iteration.

These two gradient iterations have a very different behavior for discretized oper-
ator eigenvalue problems. To compute the smallest eigenvalue of an elliptic and self-
adjoint partial differential operator the Euclidean gradient iteration (case 1 in Thm. 4.1)
is not to be recommended due to its mesh dependent convergence factor since the largest
discrete eigenvalue λn typically (e.g. those for the Laplacian) behaves like O(h−2) and
limλn→∞ κ/(2− κ) = 1.

In contrast to this, for the A-gradient steepest descent iteration limλn→∞ κ = λi/λi+1

holds. In this limit the ∆i,i+1-ratio for the Ritz values is bounded by

lim
λn→∞

(
κ

2− κ

)2

=

(
λi

λi+1

)2 (

2−
λi

λi+1

)−2

< 1.(5.1)

This allows to point out the potential of (preconditioned) steepest descent iterations
compared to the simple fixed-step-size preconditioned gradient iteration (also known as the
preconditioned inverse iteration, PINVIT) as analyzed in [7]. Its fundamental convergence
estimate is

∆i,i+1(λ
′)

∆i,i+1(λ)
≤

(

γ + (1− γ)
λi

λi+1

)2

,

with γ ∈ [0, 1) being a measure for the quality of the preconditioner.
For γ = 0 PINVIT reduces to a well-known fixed-step-size A-gradient iteration,

namely to the inverse iteration procedure and the convergence estimate reads

∆i,i+1(λ
′)

∆i,i+1(λ)
≤

(
λi

λi+1

)2

.

Comparing this estimate with the bound for the A-gradient steepest descent iteration one
gets from (5.1) in the limit λn → ∞ that

(
λi+1

2λi+1 − λi

)2

< 1

is the (grid-independent) gain-factor of the optimal step length. In other words the gain-
factor describes the benefit of the A-gradient steepest descent iteration. This result is
confirmed by the recent analysis of the preconditioned steepest descent iteration in [9],
which reproduces case 2 (steepest descent) of Thm. 4.1 in the limit of an (exact-inverse
preconditioned) B-gradient iteration.

Acknowledgment: The authors wish to thank the editor Gerard Sleijpen for his very
helpful remarks to improve the analysis and its form of presentation.
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