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Abstract

The reduction of the rotational ambiguity in multivariatenee resolution problems is a central challenge in order to
construct an fective chemometric method. Soft modeling is a method ofahtn solve this problem.

The aim of this paper is to demonstrate the impact of softtcaimés on the full set of all feasible, nonnegative
solutions. To this end the starting point is the Area of HaasBolutions (AFS) for a three-component system.
Then soft constraints, namely constraints on the unimtydafionotonicity and windowing for certain concentration
profiles, is used in order to reduce the AFS. This procesaetstichemically meaningful solutions from the set of
all feasible nonnegative factors and demonstrates the maetion of soft constraints. Results are presented for a
model problem as well as for FT-IR data for a catalytic sutesyf the rhodium-catalyzed hydroformylation process.
Typically, the AFS can significantly be reduced by adding sofstraints.

Key words: multivariate curve resolution, nonnegative matrix faiation, area of feasible solutions, soft
constraints, polygon inflation.

1. Introduction systems [3]. This work was continued by Abdollahi and
Tauler [4] and Rajko [5]. However, it is a main inter-

Multivariate curve resolution methods aim at de- est of chemists to find within the continuum of possi-
composing sequences of spectra taken from a multi- ble nonnegative factorizations the “true” or “chemically
component chemical reaction system into the underly- correct” solution. To determine a single solution is a
ing contributions from the pure components. If these typical trait of model-based methods. Many such curve
spectra are collected row-wise in a matbx then the  resolution methods exist [2] which use soft constraints
Lambert-Beer law says thBtcan approximately be fac-  andgor hard models in order to compute a factorization
tored into a product of a matri€ containing column- (1) so that the factors fulfill certain conditions. The de-
wise the concentration profiles of the pure components velopment of MCR methods is a highly active and wide
and a matrixA containing row-wise the associated pure research area; the references [6, 7, 8, 9] represent only
component spectra, that is possible examples.

D=CA (1) A fundamentally diterent approach is to compute the
set of all possible nonnegative solutions and afterwards
In general, the factorization (1) is not unique and con- to reduce the set of solutions by applying various con-
tinua of possible nonnegative solutions exist. This ob- straints. In the best case only a single and thus unique
servation was first made by Lawton and Sylvestre in solution can be extracted. For the computation of the set
1971 [1] for two-component systems; see also the intro- of all solutions, Section 3 explains the details, we use its
duction to model-free analysis and rotational ambigu- low-dimensional representation in the form of the Area
ity in [2]. In 1985, Borgen and Kowalski extended the of Feasible Solutions (AFS) [3, 10, 11, 12]. An alter-
approach of Lawton and Sylvestre to three-component native way for the reduction of the rotational ambiguity
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by means of soft constraints is to start with a computa- 2. Multivariate curveresolution

tion of the minimal and maximal band boundaries for . ]

each part of the solution [13, 14, 15]. In a second step 1 ne Lambert-Beer law in matrix form (1) poses the
the efect of soft constraints can be studies on changes Problemto find for a sequence of spectra, which are col-
of the minimal and maximal band boundaries. The re- 'ected in the columns of the data matfixe R, the

N k ingi
sults of the AFS and of the band boundaries approachesinknown factorsC € R andA e R¥". Thereinsis
are similar, see [16]. Here we follow the AFS approach the number of independent chemical components of the

as it contains the detailed information on each feasi- 9\V€n reaction system. As already mentioned, the fac-
ble factorization. Furthermore, the band boundaries can I0rSC andA are not unique but many nonnegative fac-
always be generated from the AFS, whereas the bangtorizations exist. For the actual computation of such fac-

) _ o : . T
boundaries do not allow to reconstruct all feasible fac- tofizations a singular value decompositibn= UXZV

torizations.
The aim of this paper is to demonstrate the impact of

of the spectral data matrix is the starting point [20, 21].
Such a ranks decomposition (or rank-approximation

soft constraints on the solutions represented by the AFS if singular values smaller than a certain threshold value
and to present a hybrid approach which combines the &€ ignored) has the form

conceptual rigor of an AFS computation with the suc-
cessful regularization techniques underlying soft con-
straints. The resulting method allows to extract chemi-
cally meaningful solutions from the set of feasible non-
negative factors. Recently Beyramysoltan et al. [17, 18]
presented similar results in the context of equality con-
straints.

1.1. Organization of the paper

In Section 2 a short introduction is given to the ba-
sics of multivariate curve resolution methods. The idea
behind the AFS is reviewed in Section 3. The key con-
cept, namely how to combine soft constraints with AFS
computations, is presented in Section 4. Applications
to a model problem and to experimental FT-IR spectro-
scopic data are contained in Sections 5 and 6.

1.2. Notation

Throughout this paper, variable names for matrices
are capital letters. The colon notation [19] is used to
extract columns and rows from matrices. For a matrix
M € R™" its ith row is

M(@,:) = (M, ...

and itsith column is

s mn)

My
M(:,i0) =
M

The (, j)-element of the matri® is written in the two
equivalent formsv;j = M(i, j). Vectors are written ei-
ther by using the colon notation or by lower case letters.
The pseudo-inverse of the matikis denoted byM™*
and the Frobenius norifM||e is the square root of the
sum of all squared matrix elements.
2

D~UxVT =UzsTt TV! (2)

=C =A

with the matriced) andV of left and right singular vec-
tors. According to (2) thexsregular matrixT allows to
represent all possible factorizations just by linear com-
binations of the rows o¥'" in the formA = TV'. Sim-
ilarly, the columns olUX are used to build the concen-
tration factor in the fornC = UXT-1. Consequently,
Equation (2) reduces the degrees of freedom of possible
factorizations fromK + n)s variables, that is the num-
ber of matrix elements o andA, to only s? variables,
namely the number of matrix elementsTof

Without loss of generality the pure component spec-
tra can be calibrated in a way that all matrix elements in
the first column ofT are equal to 1 so that

1 tp tis

T= 3)

1 to tss

Thus only 6-1)sdegrees of freedom are remaining, see
[22, 3, 11, 23, 24, 25]. The precise justification for this
calibration is that any pure component spectrum is guar-
anteed to always have a contribution from the first right
singular vector. This is a result of the Perron-Frobenius
theory of nonnegative matrices, see [24] for the details.

Nonnegativity of the factors, i.€C,A > 0, is a ba-
sic requirement. Unfortunately, the nonnegativity con-
straint is in most cases notfligient for a unique so-
lution. Usually, there are many nonnegative solutions
and many associated feasible matridesepresenting
these solutions. The method of choice in order to reduce
these sets of feasible solutions is to formulate additional
soft constraints which the solutions should fulfill, see
[6, 21, 26]. Typical examples are constraints on

1. the unimodality of the concentration profile,



2. the smoothness of the concentration profiles or of so-called Borgen plots [3, 30, 11] or numerically with
spectra profiles, the grid search method [18, 25], the triangle enclosure
3. the windowing of the concentrations or the spectra. method [10, 31] or the polygon inflation algorithm [12,
Soft constraints are required to hold at least approxi- 24]. A comparative review of these methods is given in
mately. In contrast to this, hard modeling always forces [29].
that a certain solution completely fulfills the constraint. Figure 1 shows a typical AFS for the spectral factor in
Typically, kinetic models for the chemical reaction are the left plot window. The experimental FT-IR data are

used in the form of hard models, see e.qg. [6, 27].

3. The area of feasible solutions

While multivariate curve resolution (MCR) methods
by means of sofhard modeling aim at computing a sin-
gle factorizationD ~ CA, the most general approach
to the MCR problem is to compute the setaif pos-
sible (feasiblefactorizations with componentwise non-
negative factor€ and A. How to describe such a set
of all possible nonnegative factorizations? For two-

component systems an answer was given in 1971 by

Lawton and Sylvestre [1], see also [22, 28]. For three-

component systems this representation problem is for

instance treated in [18, 3, 29, 10, 30, 11, 12, 24]. For

four-component systems a first solution has been pre-

sented in [31]. No solutions are known for systems with
more than four components.
The key idea for the low dimensional representation
of the set of feasible factorizations is to consider
1. only one of the factors, eithéror C, as one factor
also determines the other factor. Without loss of
generality we consider the factérfor this discus-
sion.

. only the first spectrum or the first row 8f since
the order of the rows oA can freely be selected (as
a solutionD = CAalways implies further solutions
with row-permutedA and column-permuted).

. only the matrix elements := (t12,...,t15) of T as
these elements according to (2) uniquely determine
the first row ofA, that is the first spectrum.

taken from [32], see also Section 6. This AFS consists
of three isolated subsets, which we call the segments of
the AFS. In the lower AFS segment twenty points are
marked byx. The right plot window of Figure 1 shows
the associated twenty pure component spectra.

3.1. The AFS computation

We compute the AFS (4) for three-component sys-
tems by the polygon inflation algorithm and its imple-
mentation in the=ACPACKsoftware [12, 24]. The idea
of this method is to approximate each segment of the
AFS by a sequence of increasing polygons whose ver-
tices are all located on the boundary of the segment.

The decision whether or not a certain poiatf) is
contained in the AFS is made by solving a computation-
ally expensive minimization problem. The problemis to
find a 2x 2 submatrixS of T so that

@ B
T:[

S
solves the factorization problem (2) with nonnegative
factorsC and A. The nonnegativity constraint can be
substituted by a slightly weaker constraint which allows
also small negative matrix entries. The constraints are

1
1
1

c R3X3

(5)

C(jvi) . .
— > —g, i=123 j=1,...,k
ICC. 1)l J

A, j) . .
— > —g, 1=1,23 j=1...,n,
IAG Il J

These three reduction steps allow to represent the set

of all nonnegative spectra for amcomponent system
by the following set of § — 1)-dimensional row vectors

M = {x e R™ED - aregular matrix exists with
T(L:) = (1 x) andC, A > 0} 4)

whereC, AandT are given by (2) and (3). The sat is
called the Area of Feasible Solutions (AFS). In (4) the
AFS is characterized for the spectral factor. Similarly
the AFS can be defined for the concentration factor.
The AFS computation for a two-component system is
very simple [22, 28]. For a three-component system the
AFS can be constructed either geometrically in the form
3

see [12] for details. An important strength of this ap-
proach, e.g. compared to the grid search AFS computa-
tion, is its ability to work with slightly negative compo-
nents by means of the parameterThe resulting cost
function of the minimization problem reads

3 k ..
f(a,8,S) :;;mln( ﬁ +¢)
S A, j) (6)
+ ; ; min(0, 20 +&)

+ll3 = THTJ2.
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Figure 1: A typical AFS comprising three isolated subsethisvn in the left plot. Twenty points are marked by aymbol. The right plot shows
the associated nonnegative spectra. The same problencissé in more detail in Section 6; see also upper right stibpFigure 10. The
guantitiese andg are defined in (5).

If for a certain point &, 8) the minimum fori=1:sdo
[r,io] = max(C(:,i))
min f(a,B,S) < &¢ @) for j=ip:—-1:2do
SeR22 Y(j.i) = min(Q, r - C(j — 1,i) + w)
is smaller than a threshold, e.g.e1 = 1072, then this ItL((e(nr 7 CO=LDor(r=C0 =10+ @ <0)
pointis (at least approximately) an element of the AFS. r=C(-1,i)
end
. end
4. The soft constrained AFS r = Clio. i)
The cost function (6) takes into consideration only for Jij'f)Zln'“l;(door —C(jhi) + w)
the nonnegativity of the factors and the regularity of the it (r > C(i.1)) or (r — C(j. 1) + w < 0)) then
matrix T. An extension to additional soft constraints r =C(j,i)
is straightforward. Constraints can easily be added on end
unimodality, monotonicity, closure, equality to a given end

pure component factor, windowing, smoothness and so  end

on. In the following three sections we discuss the con-

straint functions on unimodality, monotonicity and win-  figure 2: Pseudo-code for the computation of the mavixised in
dowing. Equation (8) for the cost functiofnimoda(C).

4.1. Unimodality

A unimodal concentration profile, typically the pro-
file of an intermediate compound of a reaction, has only . .
one local maximum [14]. Hence the function increases we usew = 0.03in Section 6. i
until the maximum is reached and decreases afterwards A PSeudo-code element for the computation of the
[14]. For experimental data this definition may not hold Unimodality soft constraint is shown in Figure 2. This
rigorously due to perturbations. Therefore our con- Program code computes the cost value for a given factor
straint functional on unimodality can tolerate small as- € € R Therein the reference valués either the last
cents or descents if they are opposite to the local trend function value in the case of unimodal behavior or the
of the function. These deviations are controlled by a @St penalized decreagettreased value if the function
parametet > 0. The following cost functiorfunimodal behaves non-unimodal (thef(j,i) # 0). Finally the
results in the value 0, if all columns &f are unimodal cost value on unimodality af is the squared Frobenius
functions. The cost function has a positive cost value, MM ofY
namely the sum of squares of all infringements, if the 5
(absolute values of the) deviations against the trend of funimoda(C) = IIYIlE- (8)

4

the function are larger than. For non-perturbed model
dataw = 0 can be used, and for experimental FT-IR data



fori=1:sdo of C reads
z=C(1,i) andw = C(1,i)
for j=1:k-1do > a2 )
Z(j,i)) = min(0, z—C(j + 1,i) + p) fmonotone(c) = Z mm(”Z(-, |)||2, ||W(, |)||2) . (9)
W(j,i) = max(Qw-C(j+1,i)-p) i=1
if(z>C(j+1i)or (z-C(j+1,i)+p<0))

then
z=C(j+1,i) 4.3. Windowing
ﬁn(d(w <C(j+Li)or W=C(j+Li)—p > 0)) . A'quantitative reaction with a yie!d of nearly 100%
then implies that at the end of the reaction nearly no reac-
w=C(j+1,i) tants and no intermediates are present. Further, only
end the reactants are present at the beginning if the reaction
end starts slowly. Abstractly spoken, any information on the
end conversion, the yield and the selectivity of a chemical
reaction can drastically reduce the possible solutions of
Figure 3: Pseudo-code for the computation of the matrieéandZ a pure component factorization. Additionally, known
used in Equation (9) for the cost functidfonotondC)- non-absorbing spectral bands of the pure components

are helpful in the same way. These facts are well known

from the window factor analysis (WFA) [33] and the

evolving factor analysis (EFA). In the following we sub-

With this constraint function the soft constrained AFS sume the work with such additional information on the

results only in feasible factors in whigveryconcen-  chemical system under “windowing”.
tration profile is unimodal. If this is not a wanted re- If for instance such information is available for the
sult, then the sum on the chemical components (on the concentration profiles, then certain components are ab-
variablei in the program code) should only comprise sent for some time intervals or windows. This means
a smaller set of indexes. Then the optimization proce- that for certain componengwith 1 < s < sand cer-
dure is expected to collect non-unimodal functions un- tain time indexes;; with 1 < kj; < kit holds that
der those indexes which are not within the explained thatC(k;g, s) = 0. Thus the constraint function or cost
sum oni. function for these concentration windows is

m
fwindow(C) = max(C(j(i), i) - 6, 0)*.
4.2. Monotonicity e ; %

The concentration profiles of the reactants and prod- The.reln, 0 -z Ois a Sm‘?‘” cqntrol parameter'whlch
ucts of a chemical reaction can usually be assumed again stabilizes the algorithm if small perturbations are

as monotone decreasing or increasing functions. ThusPresent Similarly, the constrajnt function can be con-
monotonicity constraints on the concentration profiles structed for knawn non-absorbing speciral bands of cer-
can be very helpful in order to reduce the AFS. The tain components.

construction principle of this constraint function is very . .
similar to the unimodality constraint. The control pa- 4.4. Costfunction for the soft constrained AFS
rameterp > 0 is used to tolerate small local as- The concept underlying the soft constrained AFS is
centgdescents which are opposite to the general behav-to add to the cost function (6) additional soft constraint
ior. This “trick” stabilizes the algorithm for perturbed functions. If the three constraints from Sections 4.1-4.3
or experimental data. In the following pseudo-code the are considered, then the cost function reads

cost values are computed simultaneously under the as-

sumption of a monotone increasing and a monotone de- feo(. 5, S) =f(a. 5. 5)
creasing function. The smaller cost value is returned as + YunimodalfunimodafC) (10)
fmonotonéc)- + ’ymOnOtOnefmonOtOnéc)

A pseudo-code element for the computation of the
monotonicity soft constraint is shown in Figure 3. This
code computes the auxiliary matricésandW from a Therein yunimodab Ymonotone Ywindow € [0, 1] are proper
given matrixC. Finally, the cost value on monotonicity ~weight constants,C is assumed to be normalized

5

+ Ywindow fwindow(C).



column-wise an is given in (5). The soft constrained
AFS is computed by using (10) instead of (6). As the
additional constraint functions potentially increase the
cost value, the threshold condition (7) added to the cost
function (10) will hold only for a smaller set of points.
Thus the soft constrained AFS is always a subset of the
original AFSM. The smaller AFS reflects the reduction
of rotational ambiguity by adding soft constraints.

The control parameter selection is important in order
to compute the soft constrained AFS in a stable way
especially for perturbed or experimental spectroscopic
data. A relatively large control parameter guarantees
that the respective constraint is fulfilled very well by
the feasible solutions. In any case, the selection of the
weight parameters in the interval,[[] guarantees that
a feasible solution fulfills all the constraint inequalitie
funimodal < ¢, fmonotone< & and so on.

Furthermore, there are other constraint functions like
the smoothness condition which works with the second
discrete derivative{{C), see [21]. The soft constraint
cost function can be used in the form

3
fsec= Y, min(0, |P(C(:, ))llz - oc)

i=1

with a weight factor 0< v < 1 and a control param-
eterdc > 0, which might be very dierent from 0. In
fact, if 6c = 0 the soft constrained AFS will be empty,
since only a linear concentration profile has a discrete
second derivative equal to 0. So the control parameter
oc has to be positive. Similarly, the control parameters
for perturbed data and for constraints like closure of the
concentrations or equality to given spectra or concentra-
tion profiles are close to butftierent from O.

5. A case study for model data

5.1. The model problem
Next soft constraints are applied to a three-
component model problem in the form of the consec-
utive reaction
X5 vk 7 (11)
The kinetic parameters without units ae = 1 and
k. = 0.5, and the time interval without unit is [05].

Concentration profiles Spectra

0.5 0.5]

o)

b )

5 10 15 0 50 100

Figure 4: Pure component concentration profiles (left) gmecsa
(right) for the model problem from Section 5.

5.2. Computation of the AFS

The concentrational and the spectral AFS with re-
spect only to the nonnegativity constraint are computed
for the model problem by means of the polygon inflation
method [12, 24]. For this non-perturbed model problem
the control parameter in (6) is set to 10*2. For the
cost function the threshold is = 1072, The resulting
AFS consists of three isolated subset or segments which
are shown in the first row of Figure 5. All segments are
non-degenerated, i.e. there are no dot- or line-segments.

5.3. Reduction of the AFS by unimodality

The three AFS segments contain a considerable
amount of rotational ambiguity, which is reflected by
the relatively large areas of the two rightmost AFS seg-
ments of the concentrational AFS, as shown in the first
row of Figure 5. The associated bands of solutions are
plotted in the first row of Figure 6. The AFS for the
concentrational facto€ contains some non-unimodal
functions. For the consecutive reactidh— Y — Z
only unimodal profiles make sense. Thus only the cost
function on unimodality as explained in Section 4.1 is
added tof (e, 8, S), see Equation (10). For the compu-
tation of the soft constrained AFS we use an extension
of the FACPACK software with the control parameters
e = 1012 g = 102 w = 0 andyunimodal = 0.1.

The reduced AFS fo€ andA are plotted in the second
row of Figure 5. In the concentrational AFS only the
blue segment of the concentrational AFS and the green
segment of the spectral AFS are reduced to a limited ex-
tent. The associated bands of solutions are displayed in
the second row of Figure 6. Pale colors are used to plot
the original solutions (which have been removed by the
soft constraint of unimodality). Next an alternative con-

The pure component spectra are assumed to be Simmestraint is used in order to gain a stronger reduction of

Gaussian curves on the wavenumber interval (0@].
Equidistant grids are used with = 101 points along
the time axis anah = 201 points along the frequency
axis. The concentration profiles and the pure component
spectra are shown in Figure 4.

6

the AFS.

5.4. Reduction of the AFS by windowing

The AFS forC and the AFS folA can drastically be
reduced by applying window arguments in the form of



soft constraints for the fact@@; cf. the approach based
on equality constraints in [18]. For the model problem
we assume that

1"1""'
,,4"'('"‘."“
;.;o;':»'f::ﬂu,'.’n‘

— 4"""
cto) =0, Cz(to) =0, Cx(tend =0, Cy(tend = O 000 lr.':;:;f.;.;»,:‘;,:,j.;n‘&,:‘:.".;%"'
i
with to = 0 andteng = 15. This dfectively means that § 0.04+ "‘:44"!'1'!';”.“‘:':!:0,:';{‘4:‘,“
the spectrum of the reactant is directly accessible from g "‘"‘\\\\

the data aty = 0 and that the spectrum of the productis %0.02\
also accessible &g = 15. Therefore the spectral AFS
has two AFS segments in the form of isolated points,
which represent just these two known spectra. The AFS
segment for the third component is reduced in a way 2050 time [min]
similar to the unimodality result. The results are shown 2100 0

in the third row of Figure 5. The associated concen- wavenumber [crrf]

trational AFS has one unique solution. This is a result rigure 7: Series of FT-IR spectra from the spectral dataimatre
which is consistent with the complementarity and dual- R*75685, The three species olefin, acyl complex and hydrido complex
ity theory from [34, 35]_ For the other two components are the main absorbing ager_ns in this frequency window. @slybset
the concentrational AFS has two line-shaped segments.Of 47 ofthek = 475 spectra is plotted.

'6rhe associated bands of solutions are shown in Figure AFS for C AFS for A
In order to remove all remaining ambiguity one can 02 <> D

additionally apply a kinetic hard model for the reaction o 08

system (11). Sometimes hard modeling or model fitting o4

of the data can be used without any combination with e

soft modeling. All this serves to reproduce the original ™ el —— 7

model data (apart from scaling) as shown in Figure 4. T et o o %

Figure 8: The computed AFS for the concentration factor andhfe
spectral factor. The chemical reaction is a three-composeisys-
tem from the rhodium-catalyzed hydroformylation proc&dse three
points marked by represent the solution which has been determined
6.1. Catalytic olefin hydroformylation by a kinetic model.

6. A casestudy for FT-IR experimental data

The hydroformylation of 3,3-dimethyl-1-butene with
a phosphite-modified rhodium catalyst has been studiedg 5 AFg of nonnegative solutions
by means of FT-IR in-situ spectroscopy in [32]. Here we
consider only the spectral window [1968120]cnT?. First the AFS for the facto€ and for the factorA
This interval contains a wavenumber grid with= 665 is computed with th&ACPACKimplementation of the
channels. A number df = 475 spectra is considered. polygon inflation algorithm [12, 24]. For these compu-
So the spectral data matr@ is a 475x 665 matrix. tations the paramete = 107 is used and the bound-
The given spectral window contains characteristic sig- ary precision is set te, = 1073, For the results see Fig-
nals from three components, namely from the olefin, ure 8. The associated bands of feasible concentration
the acyl complex and the hydrido complex. For details profiles and spectra are displayed in Figure 9. Many
see [32]. In Figures 7-11 the color code is as follows: of these solutions are so-called “abstract solutions” as
all quantities (concentration profiles, spectra and AFS they are only nonnegative but chemically meaningless.
segments) which are associated with the olefin are plot- Hence, soft constraints should be used in order to ex-
ted blue, the color red is used for the acyl complex and tract the true solution.
green represents the hydrido complex.

Thus a pure component decomposition .torz 3 6.3. AFS with soft constraints
components is wanted, and the challenge is to extract
these three components from the perturbed experimen- The soft constraints on unimodality, monotonicity
tal data. The baseline-corrected series of FT-IR spectraand windowing are used nextin order to reduce the AFS
is shown in Figure 7. of nonnegative solutions.

7
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Figure 5: The concentrational and spectral AFS for the mpitddlem (11). Firstrow: The AFS by using only the standandnegativity constraint.
Second row: Reduction of the AFS by requiring unimodalitytfe factorsC. Last row: Reduction of the AFS by the windowing soft conistisa
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Feasible factor€ Feasible factoré

time frequency

Feasible factor€ (unimodality) Feasible factoré (unimodality)

time frequency

Feasible factor€ (windowing) Feasible factor& (windowing)

10 15
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Figure 6: Bands of feasible solutions being associated twétAFS representations shown in Figure 5. Nonnegativeisogi(first row), unimodal
nonnegative solutions (second row) and window-constdaimennegative solutions (third row). Pale colors used ticate those solutions which
have been removed by the active constraints.
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Figure 9: Bands of feasible solutions being associated thighAFS
representations as shown in Figure 8. Only the spectrumeajtben
component is more or less unique. All other components shcona
siderable amount of non-uniqueness by the rotational auitiig

6.3.1. Unimodality and monotonicity soft constraints

The experimental setup of the hydroformylation reac-
tion with a high-pressure transmission IR cell in an au-
toclave allows a first spectroscopic measuremeft-at
4.65min. Then the acyl complex, which is a catalyst
precursor [Rh(acac)(Cg])with acac-acetylacetonate,

6.3.2. Windowing soft constraints

The last spectrum of the series is takkfy =
4694 min. At this time the hydroformylation of the
olefin is nearly completed. ThuSefin(tend ~ 0 and
the acyl complex is more or less completely converted
to the hydrido complex (with the ongoing reaction the
fraction of the hydrides is constantly increasing) so that
Cacyi(tend) = 0. The application of this additional infor-
mation with the windowing soft constraints, see Section
4.3, is recommended.

For the computation the control parametgrs 0.01
andywindgow = 0.1 are used. The results are plotted in
the third rows of the Figures 10 and 11. Once again,
soft constraints derived from window information suc-
cessfully reduce the AFS.

6.4. Hard modeling

As already demonstrated soft constraints are a very
good means to reduce the rotational ambiguity. How-
ever, we still do not have a unique solution. If a kinetic

has already been formed. In any case the concentrationmodel for the reaction is available, then a kinetic hard

of the hydrido complex is monotonously increasing, the
concentration of the olefin is monotonously decreasing
and the concentration profile of the acyl complex is a
unimodal function or even a decreasing function. This
gives the reason to apply the soft constraints on uni-
modality and monotonicity in order to extract the subset
of chemically interpretable solutions from the AFS.

The unimodality soft constraint is used with the cost
function (10) and the control parameter= 0.03 and
the weight factors argnimogai= 0.01 andymonotone= 0.

For the monotonicity soft constraints the control param-
eter isp = 0.0225 and the weight factors aygnimodal =

0 andymonotone= 0.1. In each of these cases the param-
eters; = 1072 and the boundary precision = 1073
are fixed.

Figure 10 shows the resulting AFS sets. The associ-

model for the reduction of the rotational ambiguity is
known to be a very powerful tool [27]. For the given
catalytic subsystem a Michaelis-Menten model has al-
ready been used successfully [36]. This has resulted in
a uniqgue solution. The associated three points in the
AFS are marked by in Figure 10. The associated con-
centration profiles and spectra are plotted by black solid
lines in Figure 11.

7. Conclusion

We conclude that the conceptual rigor of AFS meth-
ods with their full control of the set of feasible solutions
can successfully be combined with soft constraints on
unimodality, monotonicity and window constraints. The
various control parameters (like v, w andé) interact

ated bands of feasible factors are plotted in Figure 11. by enforcing the validity of the constraints. Thus the
In these figures the first rows show the reduced AFS and results of the paper demonstrate a new amalgamation of
reduced bands of solutions under the unimodality con- soft- and hard-model based MCR methods with the AFS
straint. The second rows in these figures contain the re-concept.

sults under the monotonicity constraint, which is more ~ The new methods have been applied to a model prob-
restrictive compared to the unimodality constraint. The lem and for experimental, noisy spectroscopic data from
pale blue, the pale red and the pale green bands indicatehe catalytic olefin hydroformylation. For a more de-
the bands of all nonnegative solutions and allow a sim- tailed discussion of theféacts of noise on constrained
ple and quick estimation of the reduction of ambiguity AFS computations see [37]. We hope that the approach
by the active constraints. As can be seen, the mono- points out soft-constrained AFS computations as a new

tonicity constraint for the concentration profiles of all
components is not $ficient to extract a unique solu-
tion. Especially the pure component spectrum for the
olefin (blue) has still a relatively large ambiguity.
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direction of development. The benefits of this approach
are a full control of the set of all possible factorization
together with a steerable strategy in order to extract the
“true” or “chemically correct” solution.
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Figure 10: Reduction of concentrational and spectral AF$hie hydroformylation of 3,3-dimethly-1-butene (see ®ec6) by applying diferent
types of soft constraints. The starting point is the inil@S on nonnegative factors with = 10712 andes = 10712, These AFS set without
further additional soft constraints (see Figure 8) aretptbtvith dotted lines. Three types of additional soft caaiets are applied. First row:
Application of unimodality soft constraints for the factowith the control parameters = 0.03 andyynimodal = 0.01. Second row: Application of
monotonicity soft constraints for the factGrwith control parameters = 0.0225 andymonotone= 0.1. Third row: Application of windowing soft
constraints for the factd® with control parameterg = 0.01 andyyindow = 0.1. The color blue is used for the olefin components, red inelicthe
acyl complex and green represents the hydrido complex.d@#deed curves represent the bands of solutions of thalii#S of all nonnegative
factors. Finally the points marked kyrepresent the solution which can be extracted by using di&inedel. Theo in the AFS forC is located
slightly out of the blue AFS segment. The reason for this & the kinetic solution is allowed to include small negatrdries~ 1.7 - 10-4
whereas the control parametefor the AFS-computation is much smaller, namely equal ©14.0
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Figure 11: Bands of feasible solutions which are associati#il the AFS representations as shown in Figure 10. Solstieith unimodal
nonnegative concentration profiles are displayed in thering. Solutions with monotonously decreasing or incregisioncentration profiles
are plotted in the second row. The results of a further réoludty windowing soft constraints are presented in the thind. Pale colors are
used to indicate those solutions (compared to the nonnégatbnstraint only) which have been removed by the activestraints. For the color
assignment to the chemical species see the caption of Fifur&he unique solutions which have been extracted by tretikimodel are drawn
by black solid lines.

12



References

(1]
(2]
(3]

4

(5]

6]

(7]

8

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

W.H. Lawton and E.A. Sylvestre. Self modelling curveaks
tion. Technometrics13:617-633, 1971.

M. Maeder and Y.M. NeuholdPractical data analysis in chem-
istry. Elsevier, Amsterdam, 2007.

0.S. Borgen and B.R. Kowalski. An extension of the maitiv
ate component-resolution method to three componeAisal.
Chim. Acta 174:1-26, 1985.

H. Abdollahi and R. Tauler. Uniqueness and rotation ayubi
ties in Multivariate Curve Resolution methodshemom. Intell.
Lab. Syst.108(2):100-111, 2011.

R. Rajk6. Computation of the range (band boundaries) of
feasible solutions and measure of the rotational ambiguity
self-modelingmultivariate curve resolutionAnal. Chim. Acta
645(1-2):18-24, 2009.

A. de Juan, M. Maeder, M. Martinez, and R. Tauler. Conmgn
hard and soft-modelling to solve kinetic problen@hemometr.
Intell. Lab, 54:123-141, 2000.

P.J. Gemperline and E. Cash. Advantages of soft verstd ha
constraints in self-modeling curve resolution problemgerA
nating least squares with penalty functionsAnal. Chem.
75:4236-4243, 2003.

H. Haario and V.M. Taavitsainen. Combining soft and hard
modelling in chemical kineticsChemometr. Intell. Lab44:77—
98, 1998.

J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler. A gaghi
user-friendly interface for MCR-ALS: a new tool for multiva
ate curve resolution in MATLAB.Chemom. Intell. Lab. Syst.
76(1):101-110, 2005.

A. Golshan, H. Abdollahi, and M. Maeder. Resolution aft&
tional Ambiguity for Three-Component Systerm&nal. Chem.
83(3):836-841, 2011.

R. Rajkd and K. Istvan. Analytical solution for deteining fea-
sible regions of self-modeling curve resolution (SMCR) noek
based on computational geometdy.Chemom.19(8):448-463,
2005.

M. Sawall, C. Kubis, D. Selent, A. Borner, and K. Neymes
fast polygon inflation algorithm to compute the area of fielesi
solutions for three-component systems. |: Concepts ant-app
cations.J. Chemom.27:106-116, 2013.

P.J. Gemperline. Computation of the range of feasible-s
tions in self-modeling curve resolution algorithrgal. Chem.
71(23):5398-5404, 1999.

R. Tauler. Calculation of maximum and minimum band babun
aries of feasible solutions for species profiles obtainednby
tivariate curve resolution]. Chemom.15(8):627—646, 2001.

J. Jaumot and R. Tauler. MCR-BANDS: A user friendly MAT-
LAB program for the evaluation of rotation ambiguities in
Multivariate Curve Resolution. Chemom. Intell. Lab. Syst.
103(2):96-107, 2010.

X. Zhang and R. Tauler. Measuring and comparing thelueso
tion performance and the extent of rotation ambiguitiesoofis
bilinear modeling method<Chemom. Intell. Lab. Sysii47:47—
57, 2015.

S. Beyramysoltan, H. Abdollahi, and R. Rajkd. Newevelep-
ments on self-modeling curve resolution implementing étyua
and unimodality constraintsAnal. Chim. Acta 827(0):1-14,
2014.

S. Beyramysoltan, R. Rajk6, and H. Abdollahi. Invgation of
the equality constraintfiect on the reduction of the rotational
ambiguity in three-component system using a novel gridctear
method.Anal. Chim. Acta791(0):25-35, 2013.

G.H. Golub and C.F. Van LoanMatrix Computations Johns

13

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

(35]

[36]

[37]

Hopkins Studies in the Mathematical Sciences. Johns Hepkin
University Press, 2012.

S.D. Brown, R. Tauler, and B. Walczakomprehensive Chemo-
metrics: Chemical and Biochemical Data Analysis, Vol.. E4
sevier Science, 2009.

K. Neymeyr, M. Sawall, and D. Hess. Pure component sakct
recovery and constrained matrix factorizations: Concepid
applications.J. Chemom.24:67-74, 2010.

H. Abdollahi, M. Maeder, and R. Tauler. Calculation avidan-
ing of Feasible Band Boundaries in Multivariate Curve Resol
tion of a Two-Component SystemAnal. Chem. 81(6):2115—
2122, 2009.

R. Rajko, H. Abdollahi, S. Beyramysoltan, and N. Orkidi
Definition and detection of data-based uniqueness in eadua
bilinear (two-way) chemical measuremensnal. Chim. Acta
855:21 — 33, 2015.

M. Sawall and K. Neymeyr. A fast polygon inflation algbirin

to compute the area of feasible solutions for three-commione
systems. II: Theoretical foundation, inverse polygon idla
and FAC-PACK implementation. J. Chemom. 28:633—-644,
2014.

M. Vosough, C. Mason, R. Tauler, M. Jalali-Heravi, and
M. Maeder. On rotational ambiguity in model-free analysés o
multivariate dataJ. Chemom.20(6-7):302—-310, 2006.

E. Widjaja, C. Li, W. Chew, and M. Garland. Band target
entropy minimization. A robust algorithm for pure componen
spectral recovery. Application to complex randomized omies

of six componentsAnal. Chem.75:4499-4507, 2003.

A. Golshan, H. Abdollahi, and M. Maeder. The reductidn®
tational ambiguity in soft-modeling by introducing hard dets.
Anal. Chim. Acta709(0):32-40, 2012.

R. Rajkd. Additional knowledge for determining anddn
preting feasible band boundaries in self-modglimgitivariate
curve resolution of two-component systemdsial. Chim. Acta
661(2):129-132, 2010.

A. Golshan, H. Abdollahi, S. Beyramysoltan, M. Maeder,
K. Neymeyr, R. Rajk6, M. Sawall, and R. Tauler. A review
of recent methods for the determination of ranges of feasio}
lutions resulting from model-free analyses of multivaiatata.
Technical report, Technical report, 2014.

A. Jur8, M. Sawall, and K. Neymeyr. On generalized Borg
plots. I: From convex tofine combinations and applications to
spectral dataJ. Chemometrics29(7):420-433, 2015.

A. Golshan, M. Maeder, and H. Abdollahi. Determinatiamnd
visualization of rotational ambiguity in four-componentss
tems.Anal. Chim. Acta796(0):20-26, 2013.

C. Kubis, M. Sawall, A. Block, K. Neymeyr, R. Ludwig,
A. Borner, and D. Selent. An operando FTIR spectroscopic
and kinetic study of carbon monoxide pressure influence on
rhodium-catalyzed olefin hydroformylation. Chem.-Eur. J.
20(37):11921-11931, 2014.

E.R. Malinowski. Window factor analysis: Theoretic#riva-
tion and application to flow injection analysis dataChemom.
6(1):29-40, 1992.

R. Rajkd. Natural duality in minimal constrained seibdeling
curve resolutionJ. Chemom.20(3-4):164-169, 2006.

M. Sawall, C. Fischer, D. Heller, and K. Neymeyr. Redoct
of the rotational ambiguity of curve resolution techniquesler
partial knowledge of the factors. Complementarity and dogp
theoremsJ. Chemom.26:526-537, 2012.

M. Sawall, A. Borner, C. Kubis, D. Selent, R. Ludwig, can
K. Neymeyr. Model-free multivariate curve resolution com-
bined with model-based kinetics: Algorithm and applicasio
J. Chemom.26:538-548, 2012.

N. Rahimdoust, M. Sawall, K. Neymeyr, and H. Abdollahi-



vestigating the #ect of constraints on the accuracy of the area
of feasible solutions in the presence of noise with an imgdov
cost function of the polygon inflation algorithm; soft vessard
constrained SMCR. Technical Report, Universitat Rostmo#
IASBS Zanjan, 2015.

14



