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Abstract

The reduction of the rotational ambiguity in multivariate curve resolution problems is a central challenge in order to
construct an effective chemometric method. Soft modeling is a method of choice to solve this problem.

The aim of this paper is to demonstrate the impact of soft constraints on the full set of all feasible, nonnegative
solutions. To this end the starting point is the Area of Feasible Solutions (AFS) for a three-component system.
Then soft constraints, namely constraints on the unimodality, monotonicity and windowing for certain concentration
profiles, is used in order to reduce the AFS. This process extracts chemically meaningful solutions from the set of
all feasible nonnegative factors and demonstrates the modeof action of soft constraints. Results are presented for a
model problem as well as for FT-IR data for a catalytic subsystem of the rhodium-catalyzed hydroformylationprocess.
Typically, the AFS can significantly be reduced by adding soft constraints.

Key words: multivariate curve resolution, nonnegative matrix factorization, area of feasible solutions, soft
constraints, polygon inflation.

1. Introduction

Multivariate curve resolution methods aim at de-
composing sequences of spectra taken from a multi-
component chemical reaction system into the underly-
ing contributions from the pure components. If these
spectra are collected row-wise in a matrixD, then the
Lambert-Beer law says thatD can approximately be fac-
tored into a product of a matrixC containing column-
wise the concentration profiles of the pure components
and a matrixA containing row-wise the associated pure
component spectra, that is

D = CA. (1)

In general, the factorization (1) is not unique and con-
tinua of possible nonnegative solutions exist. This ob-
servation was first made by Lawton and Sylvestre in
1971 [1] for two-component systems; see also the intro-
duction to model-free analysis and rotational ambigu-
ity in [2]. In 1985, Borgen and Kowalski extended the
approach of Lawton and Sylvestre to three-component

systems [3]. This work was continued by Abdollahi and
Tauler [4] and Rajkó [5]. However, it is a main inter-
est of chemists to find within the continuum of possi-
ble nonnegative factorizations the “true” or “chemically
correct” solution. To determine a single solution is a
typical trait of model-based methods. Many such curve
resolution methods exist [2] which use soft constraints
and/or hard models in order to compute a factorization
(1) so that the factors fulfill certain conditions. The de-
velopment of MCR methods is a highly active and wide
research area; the references [6, 7, 8, 9] represent only
possible examples.

A fundamentally different approach is to compute the
set of all possible nonnegative solutions and afterwards
to reduce the set of solutions by applying various con-
straints. In the best case only a single and thus unique
solution can be extracted. For the computation of the set
of all solutions, Section 3 explains the details, we use its
low-dimensional representation in the form of the Area
of Feasible Solutions (AFS) [3, 10, 11, 12]. An alter-
native way for the reduction of the rotational ambiguity
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by means of soft constraints is to start with a computa-
tion of the minimal and maximal band boundaries for
each part of the solution [13, 14, 15]. In a second step
the effect of soft constraints can be studies on changes
of the minimal and maximal band boundaries. The re-
sults of the AFS and of the band boundaries approaches
are similar, see [16]. Here we follow the AFS approach
as it contains the detailed information on each feasi-
ble factorization. Furthermore, the band boundaries can
always be generated from the AFS, whereas the band
boundaries do not allow to reconstruct all feasible fac-
torizations.

The aim of this paper is to demonstrate the impact of
soft constraints on the solutions represented by the AFS
and to present a hybrid approach which combines the
conceptual rigor of an AFS computation with the suc-
cessful regularization techniques underlying soft con-
straints. The resulting method allows to extract chemi-
cally meaningful solutions from the set of feasible non-
negative factors. Recently Beyramysoltan et al. [17, 18]
presented similar results in the context of equality con-
straints.

1.1. Organization of the paper

In Section 2 a short introduction is given to the ba-
sics of multivariate curve resolution methods. The idea
behind the AFS is reviewed in Section 3. The key con-
cept, namely how to combine soft constraints with AFS
computations, is presented in Section 4. Applications
to a model problem and to experimental FT-IR spectro-
scopic data are contained in Sections 5 and 6.

1.2. Notation

Throughout this paper, variable names for matrices
are capital letters. The colon notation [19] is used to
extract columns and rows from matrices. For a matrix
M ∈ Rm×n its ith row is

M(i, :) = (mi1, . . . ,min)

and itsith column is

M(:, i) =





m1i
...

mmi





.

The (i, j)-element of the matrixM is written in the two
equivalent formsMi j = M(i, j). Vectors are written ei-
ther by using the colon notation or by lower case letters.

The pseudo-inverse of the matrixM is denoted byM+

and the Frobenius norm‖M‖F is the square root of the
sum of all squared matrix elements.

2. Multivariate curve resolution

The Lambert-Beer law in matrix form (1) poses the
problem to find for a sequence of spectra, which are col-
lected in the columns of the data matrixD ∈ R

k×n, the
unknown factorsC ∈ R

k×s andA ∈ R
s×n. Thereins is

the number of independent chemical components of the
given reaction system. As already mentioned, the fac-
torsC andA are not unique but many nonnegative fac-
torizations exist. For the actual computation of such fac-
torizations a singular value decompositionD = UΣVT

of the spectral data matrix is the starting point [20, 21].
Such a rank-s decomposition (or rank-s approximation
if singular values smaller than a certain threshold value
are ignored) has the form

D ≈ UΣVT = UΣT−1
︸  ︷︷  ︸

=C

TVT
︸︷︷︸

=A

(2)

with the matricesU andV of left and right singular vec-
tors. According to (2) thes×sregular matrixT allows to
represent all possible factorizations just by linear com-
binations of the rows ofVT in the formA = TVT . Sim-
ilarly, the columns ofUΣ are used to build the concen-
tration factor in the formC = UΣT−1. Consequently,
Equation (2) reduces the degrees of freedom of possible
factorizations from (k + n)s variables, that is the num-
ber of matrix elements ofC andA, to only s2 variables,
namely the number of matrix elements ofT.

Without loss of generality the pure component spec-
tra can be calibrated in a way that all matrix elements in
the first column ofT are equal to 1 so that

T =





1 t12 . . . t1s
...

...

1 ts2 . . . tss





. (3)

Thus only (s−1)sdegrees of freedom are remaining, see
[22, 3, 11, 23, 24, 25]. The precise justification for this
calibration is that any pure component spectrum is guar-
anteed to always have a contribution from the first right
singular vector. This is a result of the Perron-Frobenius
theory of nonnegative matrices, see [24] for the details.

Nonnegativity of the factors, i.e.C,A ≥ 0, is a ba-
sic requirement. Unfortunately, the nonnegativity con-
straint is in most cases not sufficient for a unique so-
lution. Usually, there are many nonnegative solutions
and many associated feasible matricesT representing
these solutions. The method of choice in order to reduce
these sets of feasible solutions is to formulate additional
soft constraints which the solutions should fulfill, see
[6, 21, 26]. Typical examples are constraints on

1. the unimodality of the concentration profile,
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2. the smoothness of the concentration profiles or
spectra profiles,

3. the windowing of the concentrations or the spectra.
Soft constraints are required to hold at least approxi-
mately. In contrast to this, hard modeling always forces
that a certain solution completely fulfills the constraint.
Typically, kinetic models for the chemical reaction are
used in the form of hard models, see e.g. [6, 27].

3. The area of feasible solutions

While multivariate curve resolution (MCR) methods
by means of soft/hard modeling aim at computing a sin-
gle factorizationD ≈ CA, the most general approach
to the MCR problem is to compute the set ofall pos-
sible (feasible)factorizations with componentwise non-
negative factorsC andA. How to describe such a set
of all possible nonnegative factorizations? For two-
component systems an answer was given in 1971 by
Lawton and Sylvestre [1], see also [22, 28]. For three-
component systems this representation problem is for
instance treated in [18, 3, 29, 10, 30, 11, 12, 24]. For
four-component systems a first solution has been pre-
sented in [31]. No solutions are known for systems with
more than four components.

The key idea for the low dimensional representation
of the set of feasible factorizations is to consider

1. only one of the factors, eitherA or C, as one factor
also determines the other factor. Without loss of
generality we consider the factorA for this discus-
sion.

2. only the first spectrum or the first row ofA, since
the order of the rows ofA can freely be selected (as
a solutionD = CAalways implies further solutions
with row-permutedA and column-permutedC).

3. only the matrix elementsx := (t12, . . . , t1s) of T as
these elements according to (2) uniquely determine
the first row ofA, that is the first spectrum.

These three reduction steps allow to represent the set
of all nonnegative spectra for ans-component system
by the following set of (s− 1)-dimensional row vectors

M = {x ∈ R1×(s−1) : a regular matrixT exists with

T(1, :) = (1, x) andC,A ≥ 0} (4)

whereC, A andT are given by (2) and (3). The setM is
called the Area of Feasible Solutions (AFS). In (4) the
AFS is characterized for the spectral factor. Similarly
the AFS can be defined for the concentration factor.

The AFS computation for a two-component system is
very simple [22, 28]. For a three-component system the
AFS can be constructed either geometrically in the form

of so-called Borgen plots [3, 30, 11] or numerically with
the grid search method [18, 25], the triangle enclosure
method [10, 31] or the polygon inflation algorithm [12,
24]. A comparative review of these methods is given in
[29].

Figure 1 shows a typical AFS for the spectral factor in
the left plot window. The experimental FT-IR data are
taken from [32], see also Section 6. This AFS consists
of three isolated subsets, which we call the segments of
the AFS. In the lower AFS segment twenty points are
marked by×. The right plot window of Figure 1 shows
the associated twenty pure component spectra.

3.1. The AFS computation

We compute the AFS (4) for three-component sys-
tems by the polygon inflation algorithm and its imple-
mentation in theFACPACKsoftware [12, 24]. The idea
of this method is to approximate each segment of the
AFS by a sequence of increasing polygons whose ver-
tices are all located on the boundary of the segment.

The decision whether or not a certain point (α, β) is
contained in the AFS is made by solving a computation-
ally expensive minimization problem. The problem is to
find a 2× 2 submatrixS of T so that

T =





1 α β

1
1

S




∈ R3×3 (5)

solves the factorization problem (2) with nonnegative
factorsC and A. The nonnegativity constraint can be
substituted by a slightly weaker constraint which allows
also small negative matrix entries. The constraints are

C( j, i)
‖C(:, i)‖∞

≥ −ε, i = 1, 2, 3, j = 1, . . . , k,

A(i, j)
‖A(i, :)‖∞

≥ −ε, i = 1, 2, 3, j = 1, . . . , n,

see [12] for details. An important strength of this ap-
proach, e.g. compared to the grid search AFS computa-
tion, is its ability to work with slightly negative compo-
nents by means of the parameterε. The resulting cost
function of the minimization problem reads

f (α, β,S) =
3∑

i=1

k∑

j=1

min(0,
C( j, i)
‖C(:, i)‖∞

+ ε)

+

3∑

i=1

n∑

j=1

min(0,
A(i, j)
‖A(i, :)‖∞

+ ε)

+ ‖I3 − T+T‖2F .

(6)
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Figure 1: A typical AFS comprising three isolated subsets isshown in the left plot. Twenty points are marked by a× symbol. The right plot shows
the associated nonnegative spectra. The same problem is discussed in more detail in Section 6; see also upper right subplot in Figure 10.The
quantitiesα andβ are defined in (5).

If for a certain point (α, β) the minimum

min
S∈R2×2

f (α, β,S) ≤ ε f (7)

is smaller than a thresholdε f , e.g.ε f = 10−12, then this
point is (at least approximately) an element of the AFS.

4. The soft constrained AFS

The cost function (6) takes into consideration only
the nonnegativity of the factors and the regularity of the
matrix T. An extension to additional soft constraints
is straightforward. Constraints can easily be added on
unimodality, monotonicity, closure, equality to a given
pure component factor, windowing, smoothness and so
on. In the following three sections we discuss the con-
straint functions on unimodality, monotonicity and win-
dowing.

4.1. Unimodality

A unimodal concentration profile, typically the pro-
file of an intermediate compound of a reaction, has only
one local maximum [14]. Hence the function increases
until the maximum is reached and decreases afterwards
[14]. For experimental data this definition may not hold
rigorously due to perturbations. Therefore our con-
straint functional on unimodality can tolerate small as-
cents or descents if they are opposite to the local trend
of the function. These deviations are controlled by a
parameterω ≥ 0. The following cost functionfunimodal

results in the value 0, if all columns ofC are unimodal
functions. The cost function has a positive cost value,
namely the sum of squares of all infringements, if the
(absolute values of the) deviations against the trend of

for i = 1 : sdo
[r, i0] = max(C(:, i))
for j = i0 : −1 : 2 do

Y( j, i) = min(0, r −C( j − 1, i) + ω)
if ((r > C( j − 1, i)) or (r −C( j − 1, i) + ω < 0))
then

r = C( j − 1, i)
end

end
r = C(i0, i)
for j = i0 + 1 : k do

Y( j, i) = min(0, r −C( j, i) + ω)
if ((r > C( j, i)) or (r −C( j, i) + ω < 0)) then

r = C( j, i)
end

end
end

Figure 2: Pseudo-code for the computation of the matrixY used in
Equation (8) for the cost functionfunimodal(C).

the function are larger thanω. For non-perturbed model
dataω = 0 can be used, and for experimental FT-IR data
we useω = 0.03 in Section 6.

A pseudo-code element for the computation of the
unimodality soft constraint is shown in Figure 2. This
program code computes the cost value for a given factor
C ∈ Rk×s. Therein the reference valuer is either the last
function value in the case of unimodal behavior or the
last penalized decreased/increased value if the function
behaves non-unimodal (thenY( j, i) , 0). Finally the
cost value on unimodality ofC is the squared Frobenius
norm ofY

funimodal(C) = ‖Y‖2F . (8)
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for i = 1 : s do
z= C(1, i) andw = C(1, i)
for j = 1 : k− 1 do

Z( j, i) = min(0, z−C( j + 1, i) + ρ)
W( j, i) = max(0, w−C( j + 1, i) − ρ)
if ((z> C( j + 1, i)) or (z−C( j + 1, i) + ρ < 0))
then

z= C( j + 1, i)
end
if ((w < C( j + 1, i)) or (w−C( j + 1, i) − ρ > 0))
then

w = C( j + 1, i)
end

end
end

Figure 3: Pseudo-code for the computation of the matricesW andZ
used in Equation (9) for the cost functionfmonotone(C).

With this constraint function the soft constrained AFS
results only in feasible factors in whicheveryconcen-
tration profile is unimodal. If this is not a wanted re-
sult, then the sum on the chemical components (on the
variable i in the program code) should only comprise
a smaller set of indexes. Then the optimization proce-
dure is expected to collect non-unimodal functions un-
der those indexes which are not within the explained
sum oni.

4.2. Monotonicity

The concentration profiles of the reactants and prod-
ucts of a chemical reaction can usually be assumed
as monotone decreasing or increasing functions. Thus
monotonicity constraints on the concentration profiles
can be very helpful in order to reduce the AFS. The
construction principle of this constraint function is very
similar to the unimodality constraint. The control pa-
rameterρ ≥ 0 is used to tolerate small local as-
cents/descents which are opposite to the general behav-
ior. This “trick” stabilizes the algorithm for perturbed
or experimental data. In the following pseudo-code the
cost values are computed simultaneously under the as-
sumption of a monotone increasing and a monotone de-
creasing function. The smaller cost value is returned as
fmonotone(C).

A pseudo-code element for the computation of the
monotonicity soft constraint is shown in Figure 3. This
code computes the auxiliary matricesZ andW from a
given matrixC. Finally, the cost value on monotonicity

of C reads

fmonotone(C) =
s∑

i=1

min
(

‖Z(:, i)‖22, ‖W(:, i)‖22
)

. (9)

4.3. Windowing

A quantitative reaction with a yield of nearly 100%
implies that at the end of the reaction nearly no reac-
tants and no intermediates are present. Further, only
the reactants are present at the beginning if the reaction
starts slowly. Abstractly spoken, any information on the
conversion, the yield and the selectivity of a chemical
reaction can drastically reduce the possible solutions of
a pure component factorization. Additionally, known
non-absorbing spectral bands of the pure components
are helpful in the same way. These facts are well known
from the window factor analysis (WFA) [33] and the
evolving factor analysis (EFA). In the following we sub-
sume the work with such additional information on the
chemical system under “windowing”.

If for instance such information is available for the
concentration profiles, then certain components are ab-
sent for some time intervals or windows. This means
that for certain componentssi with 1 ≤ si ≤ s and cer-
tain time indexesk j(i) with 1 ≤ k j(i) ≤ k it holds that
thatC(k j(i), si) = 0. Thus the constraint function or cost
function for these concentration windows is

fwindow(C) =
m∑

i=1

∑

j(i)

max(C( j(i), i) − θ, 0)2.

Therein, θ ≥ 0 is a small control parameter which
again stabilizes the algorithm if small perturbations are
present. Similarly, the constraint function can be con-
structed for known non-absorbing spectral bands of cer-
tain components.

4.4. Cost function for the soft constrained AFS

The concept underlying the soft constrained AFS is
to add to the cost function (6) additional soft constraint
functions. If the three constraints from Sections 4.1–4.3
are considered, then the cost function reads

fsoft(α, β,S) = f (α, β,S)

+ γunimodalfunimodal(C)

+ γmonotonefmonotone(C)

+ γwindow fwindow(C).

(10)

Thereinγunimodal, γmonotone, γwindow ∈ [0, 1] are proper
weight constants,C is assumed to be normalized
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column-wise andS is given in (5). The soft constrained
AFS is computed by using (10) instead of (6). As the
additional constraint functions potentially increase the
cost value, the threshold condition (7) added to the cost
function (10) will hold only for a smaller set of points.
Thus the soft constrained AFS is always a subset of the
original AFSM. The smaller AFS reflects the reduction
of rotational ambiguity by adding soft constraints.

The control parameter selection is important in order
to compute the soft constrained AFS in a stable way
especially for perturbed or experimental spectroscopic
data. A relatively large control parameter guarantees
that the respective constraint is fulfilled very well by
the feasible solutions. In any case, the selection of the
weight parameters in the interval [0, 1] guarantees that
a feasible solution fulfills all the constraint inequalities
funimodal≤ ε f , fmonotone≤ ε f and so on.

Furthermore, there are other constraint functions like
the smoothness condition which works with the second
discrete derivative d2(C), see [21]. The soft constraint
cost function can be used in the form

fsec= γ

3∑

i=1

min(0, ‖d2(C(:, i))‖2 − δC)

with a weight factor 0≤ γ ≤ 1 and a control param-
eterδC ≥ 0, which might be very different from 0. In
fact, if δC = 0 the soft constrained AFS will be empty,
since only a linear concentration profile has a discrete
second derivative equal to 0. So the control parameter
δC has to be positive. Similarly, the control parameters
for perturbed data and for constraints like closure of the
concentrations or equality to given spectra or concentra-
tion profiles are close to but different from 0.

5. A case study for model data

5.1. The model problem

Next soft constraints are applied to a three-
component model problem in the form of the consec-
utive reaction

X
k1
−→ Y

k2
−→ Z. (11)

The kinetic parameters without units arek1 = 1 and
k2 = 0.5, and the time interval without unit is [0, 15].
The pure component spectra are assumed to be simple
Gaussian curves on the wavenumber interval [0, 100].
Equidistant grids are used withk = 101 points along
the time axis andn = 201 points along the frequency
axis. The concentration profiles and the pure component
spectra are shown in Figure 4.

0 5 10 15
0

0.5

1
Concentration profiles

0 50 100
0

0.5

1
Spectra

Figure 4: Pure component concentration profiles (left) and spectra
(right) for the model problem from Section 5.

5.2. Computation of the AFS

The concentrational and the spectral AFS with re-
spect only to the nonnegativity constraint are computed
for the model problem by means of the polygon inflation
method [12, 24]. For this non-perturbed model problem
the control parameterε in (6) is set to 10−12. For the
cost function the threshold isε f = 10−12. The resulting
AFS consists of three isolated subset or segments which
are shown in the first row of Figure 5. All segments are
non-degenerated, i.e. there are no dot- or line-segments.

5.3. Reduction of the AFS by unimodality

The three AFS segments contain a considerable
amount of rotational ambiguity, which is reflected by
the relatively large areas of the two rightmost AFS seg-
ments of the concentrational AFS, as shown in the first
row of Figure 5. The associated bands of solutions are
plotted in the first row of Figure 6. The AFS for the
concentrational factorC contains some non-unimodal
functions. For the consecutive reactionX → Y → Z
only unimodal profiles make sense. Thus only the cost
function on unimodality as explained in Section 4.1 is
added tof (α, β,S), see Equation (10). For the compu-
tation of the soft constrained AFS we use an extension
of the FACPACKsoftware with the control parameters
ε = 10−12, ε f = 10−12, ω = 0 andγunimodal = 0.1.
The reduced AFS forC andA are plotted in the second
row of Figure 5. In the concentrational AFS only the
blue segment of the concentrational AFS and the green
segment of the spectral AFS are reduced to a limited ex-
tent. The associated bands of solutions are displayed in
the second row of Figure 6. Pale colors are used to plot
the original solutions (which have been removed by the
soft constraint of unimodality). Next an alternative con-
straint is used in order to gain a stronger reduction of
the AFS.

5.4. Reduction of the AFS by windowing

The AFS forC and the AFS forA can drastically be
reduced by applying window arguments in the form of
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soft constraints for the factorC; cf. the approach based
on equality constraints in [18]. For the model problem
we assume that

cY(t0) = 0, cZ(t0) = 0, cX(tend) = 0, cY(tend) = 0

with t0 = 0 andtend = 15. This effectively means that
the spectrum of the reactant is directly accessible from
the data att0 = 0 and that the spectrum of the product is
also accessible attend = 15. Therefore the spectral AFS
has two AFS segments in the form of isolated points,
which represent just these two known spectra. The AFS
segment for the third component is reduced in a way
similar to the unimodality result. The results are shown
in the third row of Figure 5. The associated concen-
trational AFS has one unique solution. This is a result
which is consistent with the complementarity and dual-
ity theory from [34, 35]. For the other two components
the concentrational AFS has two line-shaped segments.
The associated bands of solutions are shown in Figure
6.

In order to remove all remaining ambiguity one can
additionally apply a kinetic hard model for the reaction
system (11). Sometimes hard modeling or model fitting
of the data can be used without any combination with
soft modeling. All this serves to reproduce the original
model data (apart from scaling) as shown in Figure 4.

6. A case study for FT-IR experimental data

6.1. Catalytic olefin hydroformylation

The hydroformylation of 3,3-dimethyl-1-butene with
a phosphite-modified rhodium catalyst has been studied
by means of FT-IR in-situ spectroscopy in [32]. Here we
consider only the spectral window [1960, 2120]cm−1.
This interval contains a wavenumber grid withn = 665
channels. A number ofk = 475 spectra is considered.
So the spectral data matrixD is a 475× 665 matrix.
The given spectral window contains characteristic sig-
nals from three components, namely from the olefin,
the acyl complex and the hydrido complex. For details
see [32]. In Figures 7–11 the color code is as follows:
all quantities (concentration profiles, spectra and AFS
segments) which are associated with the olefin are plot-
ted blue, the color red is used for the acyl complex and
green represents the hydrido complex.

Thus a pure component decomposition fors = 3
components is wanted, and the challenge is to extract
these three components from the perturbed experimen-
tal data. The baseline-corrected series of FT-IR spectra
is shown in Figure 7.
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Figure 7: Series of FT-IR spectra from the spectral data matrix D ∈
R

475×665. The three species olefin, acyl complex and hydrido complex
are the main absorbing agents in this frequency window. Onlya subset
of 47 of thek = 475 spectra is plotted.
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Figure 8: The computed AFS for the concentration factor and for the
spectral factor. The chemical reaction is a three-component subsys-
tem from the rhodium-catalyzed hydroformylation process.The three
points marked by◦ represent the solution which has been determined
by a kinetic model.

6.2. AFS of nonnegative solutions

First the AFS for the factorC and for the factorA
is computed with theFACPACKimplementation of the
polygon inflation algorithm [12, 24]. For these compu-
tations the parameterε f = 10−12 is used and the bound-
ary precision is set toεb = 10−3. For the results see Fig-
ure 8. The associated bands of feasible concentration
profiles and spectra are displayed in Figure 9. Many
of these solutions are so-called “abstract solutions” as
they are only nonnegative but chemically meaningless.
Hence, soft constraints should be used in order to ex-
tract the true solution.

6.3. AFS with soft constraints

The soft constraints on unimodality, monotonicity
and windowing are used next in order to reduce the AFS
of nonnegative solutions.
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Figure 5: The concentrational and spectral AFS for the modelproblem (11). First row: The AFS by using only the standard nonnegativity constraint.
Second row: Reduction of the AFS by requiring unimodality for the factorsC. Last row: Reduction of the AFS by the windowing soft constraints
cY(t0) = cZ(t0) = 0 andcX(tend) = cY(tend) = 0.
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Figure 6: Bands of feasible solutions being associated withthe AFS representations shown in Figure 5. Nonnegative solutions (first row), unimodal
nonnegative solutions (second row) and window-constrained nonnegative solutions (third row). Pale colors used to indicate those solutions which
have been removed by the active constraints.
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Figure 9: Bands of feasible solutions being associated withthe AFS
representations as shown in Figure 8. Only the spectrum of the green
component is more or less unique. All other components show acon-
siderable amount of non-uniqueness by the rotational ambiguity.

6.3.1. Unimodality and monotonicity soft constraints

The experimental setup of the hydroformylation reac-
tion with a high-pressure transmission IR cell in an au-
toclave allows a first spectroscopic measurement att0 =
4.65 min. Then the acyl complex, which is a catalyst
precursor [Rh(acac)(CO)2] with acac=acetylacetonate,
has already been formed. In any case the concentration
of the hydrido complex is monotonously increasing, the
concentration of the olefin is monotonously decreasing
and the concentration profile of the acyl complex is a
unimodal function or even a decreasing function. This
gives the reason to apply the soft constraints on uni-
modality and monotonicity in order to extract the subset
of chemically interpretable solutions from the AFS.

The unimodality soft constraint is used with the cost
function (10) and the control parameterω = 0.03 and
the weight factors areγunimodal= 0.01 andγmonotone= 0.
For the monotonicity soft constraints the control param-
eter isρ = 0.0225 and the weight factors areγunimodal=

0 andγmonotone= 0.1. In each of these cases the param-
eterε f = 10−12 and the boundary precisionεb = 10−3

are fixed.

Figure 10 shows the resulting AFS sets. The associ-
ated bands of feasible factors are plotted in Figure 11.
In these figures the first rows show the reduced AFS and
reduced bands of solutions under the unimodality con-
straint. The second rows in these figures contain the re-
sults under the monotonicity constraint, which is more
restrictive compared to the unimodality constraint. The
pale blue, the pale red and the pale green bands indicate
the bands of all nonnegative solutions and allow a sim-
ple and quick estimation of the reduction of ambiguity
by the active constraints. As can be seen, the mono-
tonicity constraint for the concentration profiles of all
components is not sufficient to extract a unique solu-
tion. Especially the pure component spectrum for the
olefin (blue) has still a relatively large ambiguity.

6.3.2. Windowing soft constraints
The last spectrum of the series is takentend =

469.4 min. At this time the hydroformylation of the
olefin is nearly completed. Thuscolefin(tend) ≈ 0 and
the acyl complex is more or less completely converted
to the hydrido complex (with the ongoing reaction the
fraction of the hydrides is constantly increasing) so that
cacyl(tend) ≈ 0. The application of this additional infor-
mation with the windowing soft constraints, see Section
4.3, is recommended.

For the computation the control parametersθ = 0.01
andγwindow = 0.1 are used. The results are plotted in
the third rows of the Figures 10 and 11. Once again,
soft constraints derived from window information suc-
cessfully reduce the AFS.

6.4. Hard modeling

As already demonstrated soft constraints are a very
good means to reduce the rotational ambiguity. How-
ever, we still do not have a unique solution. If a kinetic
model for the reaction is available, then a kinetic hard
model for the reduction of the rotational ambiguity is
known to be a very powerful tool [27]. For the given
catalytic subsystem a Michaelis-Menten model has al-
ready been used successfully [36]. This has resulted in
a unique solution. The associated three points in the
AFS are marked by◦ in Figure 10. The associated con-
centration profiles and spectra are plotted by black solid
lines in Figure 11.

7. Conclusion

We conclude that the conceptual rigor of AFS meth-
ods with their full control of the set of feasible solutions
can successfully be combined with soft constraints on
unimodality, monotonicity and window constraints. The
various control parameters (likeǫ, γ, ω andθ) interact
by enforcing the validity of the constraints. Thus the
results of the paper demonstrate a new amalgamation of
soft- and hard-model based MCR methods with the AFS
concept.

The new methods have been applied to a model prob-
lem and for experimental, noisy spectroscopic data from
the catalytic olefin hydroformylation. For a more de-
tailed discussion of the effects of noise on constrained
AFS computations see [37]. We hope that the approach
points out soft-constrained AFS computations as a new
direction of development. The benefits of this approach
are a full control of the set of all possible factorization
together with a steerable strategy in order to extract the
“true” or “chemically correct” solution.
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Figure 10: Reduction of concentrational and spectral AFS for the hydroformylation of 3,3-dimethly-1-butene (see Section 6) by applying different
types of soft constraints. The starting point is the initialAFS on nonnegative factors withε = 10−12 andε f = 10−12. These AFS set without
further additional soft constraints (see Figure 8) are plotted with dotted lines. Three types of additional soft constraints are applied. First row:
Application of unimodality soft constraints for the factorC with the control parametersω = 0.03 andγunimodal= 0.01. Second row: Application of
monotonicity soft constraints for the factorC with control parametersρ = 0.0225 andγmonotone= 0.1. Third row: Application of windowing soft
constraints for the factorC with control parametersθ = 0.01 andγwindow = 0.1. The color blue is used for the olefin components, red indicates the
acyl complex and green represents the hydrido complex. Palecolored curves represent the bands of solutions of the initial AFS of all nonnegative
factors. Finally the points marked by◦ represent the solution which can be extracted by using a kinetic model. The◦ in the AFS forC is located
slightly out of the blue AFS segment. The reason for this is that the kinetic solution is allowed to include small negativeentries≈ 1.7 · 10−4
whereas the control parameterε for the AFS-computation is much smaller, namely equal to 10−12.
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Figure 11: Bands of feasible solutions which are associatedwith the AFS representations as shown in Figure 10. Solutions with unimodal
nonnegative concentration profiles are displayed in the first row. Solutions with monotonously decreasing or increasing concentration profiles
are plotted in the second row. The results of a further reduction by windowing soft constraints are presented in the thirdrow. Pale colors are
used to indicate those solutions (compared to the nonnegativity constraint only) which have been removed by the active constraints. For the color
assignment to the chemical species see the caption of Figure10. The unique solutions which have been extracted by the kinetic model are drawn
by black solid lines.
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[5] R. Rajkó. Computation of the range (band boundaries) of
feasible solutions and measure of the rotational ambiguityin
self-modeling/multivariate curve resolution.Anal. Chim. Acta,
645(1–2):18–24, 2009.

[6] A. de Juan, M. Maeder, M. Martı́nez, and R. Tauler. Combining
hard and soft-modelling to solve kinetic problems.Chemometr.
Intell. Lab., 54:123–141, 2000.

[7] P.J. Gemperline and E. Cash. Advantages of soft versus hard
constraints in self-modeling curve resolution problems. Alter-
nating least squares with penalty functions.Anal. Chem.,
75:4236–4243, 2003.

[8] H. Haario and V.M. Taavitsainen. Combining soft and hard
modelling in chemical kinetics.Chemometr. Intell. Lab., 44:77–
98, 1998.

[9] J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler. A graphical
user-friendly interface for MCR-ALS: a new tool for multivari-
ate curve resolution in MATLAB.Chemom. Intell. Lab. Syst.,
76(1):101–110, 2005.

[10] A. Golshan, H. Abdollahi, and M. Maeder. Resolution of Rota-
tional Ambiguity for Three-Component Systems.Anal. Chem.,
83(3):836–841, 2011.
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[18] S. Beyramysoltan, R. Rajkó, and H. Abdollahi. Investigation of
the equality constraint effect on the reduction of the rotational
ambiguity in three-component system using a novel grid search
method.Anal. Chim. Acta, 791(0):25–35, 2013.

[19] G.H. Golub and C.F. Van Loan.Matrix Computations. Johns

Hopkins Studies in the Mathematical Sciences. Johns Hopkins
University Press, 2012.

[20] S.D. Brown, R. Tauler, and B. Walczak.Comprehensive Chemo-
metrics: Chemical and Biochemical Data Analysis, Vol. 1-4. El-
sevier Science, 2009.

[21] K. Neymeyr, M. Sawall, and D. Hess. Pure component spectral
recovery and constrained matrix factorizations: Conceptsand
applications.J. Chemom., 24:67–74, 2010.

[22] H. Abdollahi, M. Maeder, and R. Tauler. Calculation andMean-
ing of Feasible Band Boundaries in Multivariate Curve Resolu-
tion of a Two-Component System.Anal. Chem., 81(6):2115–
2122, 2009.
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