Scientific Papers
- M. Zhou, A.V. Knyazev, K. Neymeyr,
Angle-free cluster-robust Ritz value bounds for restarted block eigensolvers.
Numer. Linear Algebra Appl. online (2024), e2607. https://doi.org/10.1002/nla.2607. - M. Zhou, K. Neymeyr,
Convergence rates of individual Ritz values in block preconditioned gradient-type eigensolvers.
Electron. Trans. Numer. Anal. 58 (2023), 597-620. https://doi.org/10.1553/etna_vol58s597. - M. Zhou, M.E. Argentati, A.V. Knyazev, K. Neymeyr,
Sharp majorization-type cluster robust bounds for block filters and eigensolvers.
SIAM J. Matrix Anal. Appl. 44 (2023), 1852-1878. https://doi.org/10.1137/23M1551729. - M. Zhou, Z. Bai, Y. Cai, K. Neymeyr,
Convergence analysis of a block preconditioned steepest descent eigensolver with implicit deflation.
Numer. Linear Algebra Appl. 30 (2023), e2498. https://doi.org/10.1002/nla.2498. - M. Zhou, K. Neymeyr,
Cluster robust estimates for block gradient-type eigensolvers.
Math. Comp. 88 (2019), 2737-2765. https://doi.org/10.1090/mcom/3446. - J. Kohler, H. Daneshmand, A. Lucchi, T. Hofmann, M. Zhou, K. Neymeyr,
Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization.
Proceedings of Machine Learning Research 89 (2019), 806-815. - M. Zhou,
Convergence estimates of nonrestarted and restarted block-Lanczos methods.
Numer. Linear Algebra Appl. 25 (2018), e2182. https://doi.org/10.1002/nla.2182. - M. Zhou, K. Neymeyr,
Sharp Ritz value estimates for restarted Krylov subspace iterations.
Electron. Trans. Numer. Anal. 46 (2017), 424-446. - M.E. Argentati, A.V. Knyazev, K. Neymeyr, E.E. Ovtchinnikov, M. Zhou,
Convergence theory for preconditioned eigenvalue solvers in a nutshell.
Foundations of Computational Mathematics 17 (2017), 713-727.
Paper in arXiv library. DOI: 10.1007/s10208-015-9297-1. - K. Neymeyr, M. Zhou,
Convergence analysis of restarted Krylov subspace eigensolvers.
SIAM J. Matrix Anal. Appl. 37 (2016), 955-975.
DOI:10.1137/16M1056481. - M. Zhou, K. Neymeyr,
Users' guide to the AMP Eigensolver (Adaptive Multigrid Preconditioned Eigensolver).
Version 1.0, 2014. - K. Neymeyr, M. Zhou,
The block preconditioned steepest descent iteration for elliptic operator eigenvalue problems.
Electron. Trans. Numer. Anal. 41 (2014), 93-108. - K. Neymeyr, M. Zhou,
Iterative minimization of the Rayleigh quotient by block steepest descent iterations.
Numer. Linear Algebra Appl. 21 (2014), 604-617. - K. Neymeyr, E. Ovtchinnikov, M. Zhou,
Convergence analysis of gradient iterations for the symmetric eigenvalue problem.
SIAM J. Matrix Anal. Appl. 32 (2011), 443-456. - M. Zhou,
On the convergence theory of preconditioned subspace iterations for eigenvalue problems.
(Proceeding GAMM 2010) Proc. Appl. Math. Mech. 10 (2010), 553-554
Software
Adaptive Multigrid Preconditioned Eigensolver: A software for the computation of the smallest eigenvalues and the associated eigenfunctions of a self-adjoint and elliptic partial differential operator in 2D domains.
Contact
Universität Rostock
Institut für Mathematik
Ulmenstraße 69, Haus 3
18057 Rostock,
Germany
Room: 332
Telefon: +49(0)381/498-6644
E-Mail:
ming.zhou [at] uni-rostock.de